• Media type: E-Article
  • Title: Asymmetric counteranion-directed Lewis acid organocatalysis for the scalable cyanosilylation of aldehydes
  • Contributor: Zhang, Zhipeng; Bae, Han Yong; Guin, Joyram; Rabalakos, Constantinos; van Gemmeren, Manuel; Leutzsch, Markus; Klussmann, Martin; List, Benjamin
  • imprint: Springer Science and Business Media LLC, 2016
  • Published in: Nature Communications
  • Language: English
  • DOI: 10.1038/ncomms12478
  • ISSN: 2041-1723
  • Keywords: General Physics and Astronomy ; General Biochemistry, Genetics and Molecular Biology ; General Chemistry ; Multidisciplinary
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title><jats:p>Due to the high versatility of chiral cyanohydrins, the catalytic asymmetric cyanation reaction of carbonyl compounds has attracted widespread interest. However, efficient protocols that function at a preparative scale with low catalyst loading are still rare. Here, asymmetric counteranion-directed Lewis acid organocatalysis proves to be remarkably successful in addressing this problem and enabled a molar-scale cyanosilylation in quantitative yield and with excellent enantioselectivity. Also, the catalyst loading could be lowered to a part-per-million level (50 ppm: 0.005 mol%). A readily accessible chiral disulfonimide was used, which in combination with trimethylsilyl cyanide, turned into the active silylium Lewis acid organocatalyst. The nature of a peculiar phenomenon referred to as a “dormant period”, which is mainly induced by water, was systematically investigated by means of <jats:italic>in situ</jats:italic> Fourier transform infrared analysis.</jats:p>
  • Access State: Open Access