• Media type: E-Article
  • Title: Biomimetic mercury immobilization by selenium functionalized polyphenylene sulfide fabric
  • Contributor: Li, Hailong; Meng, Fanyue; Zhu, Penglin; Zu, Hongxiao; Yang, Zequn; Qu, Wenqi; Yang, Jianping
  • imprint: Springer Science and Business Media LLC, 2024
  • Published in: Nature Communications
  • Language: English
  • DOI: 10.1038/s41467-024-45486-7
  • ISSN: 2041-1723
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title><jats:p>Highly efficient decontamination of elemental mercury (Hg<jats:sup>0</jats:sup>) remains an enormous challenge for public health and ecosystem protection. The artificial conversion of Hg<jats:sup>0</jats:sup> into mercury chalcogenides could achieve Hg<jats:sup>0</jats:sup> detoxification and close the global mercury cycle. Herein, taking inspiration from the bio-detoxification of mercury, in which selenium preferentially converts mercury from sulfoproteins to HgSe, we propose a biomimetic approach to enhance the conversion of Hg<jats:sup>0</jats:sup> into mercury chalcogenides. In this proof-of-concept design, we use sulfur-rich polyphenylene sulfide (PPS) as the Hg<jats:sup>0</jats:sup> transporter. The relatively stable, sulfur-linked aromatic rings result in weak adsorption of Hg<jats:sup>0</jats:sup> on the PPS rather than the formation of metastable HgS. The weakly adsorbed mercury subsequently migrates to the adjacent selenium sites for permanent immobilization. The sulfur-selenium pair affords an unprecedented Hg<jats:sup>0</jats:sup> adsorption capacity and uptake rate of 1621.9 mg g<jats:sup>−1</jats:sup> and 1005.6 μg g<jats:sup>−1</jats:sup> min<jats:sup>−1</jats:sup>, respectively, which are the highest recorded values among various benchmark materials. This work presents an intriguing concept for preparing Hg<jats:sup>0</jats:sup> adsorbents and could pave the way for the biomimetic remediation of diverse pollutants.</jats:p>
  • Access State: Open Access