> Details
Sun, Hua;
Cao, Song;
Mashl, R. Jay;
Mo, Chia-Kuei;
Zaccaria, Simone;
Wendl, Michael C.;
Davies, Sherri R.;
Bailey, Matthew H.;
Primeau, Tina M.;
Hoog, Jeremy;
Mudd, Jacqueline L.;
Dean, Dennis A.;
Patidar, Rajesh;
Chen, Li;
Wyczalkowski, Matthew A.;
Jayasinghe, Reyka G.;
Rodrigues, Fernanda Martins;
Terekhanova, Nadezhda V.;
Li, Yize;
Lim, Kian-Huat;
Wang-Gillam, Andrea;
Van Tine, Brian A.;
Ma, Cynthia X.;
Aft, Rebecca;
[...]
Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment
Sharing
Reference
management
Direct link
Bookmarks
Remove from
bookmarks
Share this by email
Share this on Twitter
Share this on Facebook
Share this on Whatsapp
- Media type: E-Article
- Title: Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment
- Contributor: Sun, Hua; Cao, Song; Mashl, R. Jay; Mo, Chia-Kuei; Zaccaria, Simone; Wendl, Michael C.; Davies, Sherri R.; Bailey, Matthew H.; Primeau, Tina M.; Hoog, Jeremy; Mudd, Jacqueline L.; Dean, Dennis A.; Patidar, Rajesh; Chen, Li; Wyczalkowski, Matthew A.; Jayasinghe, Reyka G.; Rodrigues, Fernanda Martins; Terekhanova, Nadezhda V.; Li, Yize; Lim, Kian-Huat; Wang-Gillam, Andrea; Van Tine, Brian A.; Ma, Cynthia X.; Aft, Rebecca; [...]
-
Published:
Springer Science and Business Media LLC, 2021
- Published in: Nature Communications, 12 (2021) 1
- Language: English
- DOI: 10.1038/s41467-021-25177-3
- ISSN: 2041-1723
- Origination:
- Footnote:
- Description: AbstractDevelopment of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs’ recapitulation of human tumors.
- Access State: Open Access