• Media type: E-Article
  • Title: Identification of lead vacancy defects in lead halide perovskites
  • Contributor: Keeble, David J.; Wiktor, Julia; Pathak, Sandeep K.; Phillips, Laurie J.; Dickmann, Marcel; Durose, Ken; Snaith, Henry J.; Egger, Werner
  • imprint: Springer Science and Business Media LLC, 2021
  • Published in: Nature Communications
  • Language: English
  • DOI: 10.1038/s41467-021-25937-1
  • ISSN: 2041-1723
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title><jats:p>Perovskite photovoltaics advance rapidly, but questions remain regarding point defects: while experiments have detected the presence of electrically active defects no experimentally confirmed microscopic identifications have been reported. Here we identify lead monovacancy (V<jats:sub>Pb</jats:sub>) defects in MAPbI<jats:sub>3</jats:sub> (MA = CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub><jats:sup>+</jats:sup>) using positron annihilation lifetime spectroscopy with the aid of density functional theory. Experiments on thin film and single crystal samples all exhibited dominant positron trapping to lead vacancy defects, and a minimum defect density of ~3 × 10<jats:sup>15</jats:sup> cm<jats:sup>−3</jats:sup> was determined. There was also evidence of trapping at the vacancy complex <jats:inline-formula><jats:alternatives><jats:tex-math>$$({{{{{\rm{V}}}}}}_{{{{{\rm{Pb}}}}}}{{{{{\rm{V}}}}}}_{{{{{\rm{I}}}}}})^{-}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>V</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Pb</mml:mi> </mml:mrow> </mml:msub> <mml:msub> <mml:mrow> <mml:mi>V</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> </mml:mrow> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula> in a minority of samples, but no trapping to MA-ion vacancies was observed. Our experimental results support the predictions of other first-principles studies that deep level, hole trapping, <jats:inline-formula><jats:alternatives><jats:tex-math>$${{{{{{\rm{V}}}}}}}_{{{{{{\rm{Pb}}}}}}}^{2-}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mrow> <mml:mi>V</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>Pb</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−</mml:mo> </mml:mrow> </mml:msubsup> </mml:math></jats:alternatives></jats:inline-formula>, point defects are one of the most stable defects in MAPbI<jats:sub>3</jats:sub>. This direct detection and identification of a deep level native defect in a halide perovskite, at technologically relevant concentrations, will enable further investigation of defect driven mechanisms.</jats:p>
  • Access State: Open Access