> Details
Mo, Lidong;
Zohner, Constantin M.;
Reich, Peter B.;
Liang, Jingjing;
de Miguel, Sergio;
Nabuurs, Gert-Jan;
Renner, Susanne S.;
van den Hoogen, Johan;
Araza, Arnan;
Herold, Martin;
Mirzagholi, Leila;
Ma, Haozhi;
Averill, Colin;
Phillips, Oliver L.;
Gamarra, Javier G. P.;
Hordijk, Iris;
Routh, Devin;
Abegg, Meinrad;
Adou Yao, Yves C.;
Alberti, Giorgio;
Almeyda Zambrano, Angelica M.;
Alvarado, Braulio Vilchez;
Alvarez-Dávila, Esteban;
Alvarez-Loayza, Patricia;
[...]
Integrated global assessment of the natural forest carbon potential
Sharing
Reference
management
Direct link
Bookmarks
Remove from
bookmarks
Share this by email
Share this on Twitter
Share this on Facebook
Share this on Whatsapp
- Media type: E-Article
- Title: Integrated global assessment of the natural forest carbon potential
- Contributor: Mo, Lidong; Zohner, Constantin M.; Reich, Peter B.; Liang, Jingjing; de Miguel, Sergio; Nabuurs, Gert-Jan; Renner, Susanne S.; van den Hoogen, Johan; Araza, Arnan; Herold, Martin; Mirzagholi, Leila; Ma, Haozhi; Averill, Colin; Phillips, Oliver L.; Gamarra, Javier G. P.; Hordijk, Iris; Routh, Devin; Abegg, Meinrad; Adou Yao, Yves C.; Alberti, Giorgio; Almeyda Zambrano, Angelica M.; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; [...]
-
Published:
Springer Science and Business Media LLC, 2023
- Published in: Nature, 624 (2023) 7990, Seite 92-101
- Language: English
- DOI: 10.1038/s41586-023-06723-z
- ISSN: 0028-0836; 1476-4687
- Origination:
- Footnote:
- Description: AbstractForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.