Description:
The accumulation and decay characteristics of exoelectron sources at a MgO protective layer surface in alternating-current plasma display panels (AC-PDPs) were investigated. The positively charged MgO surface provides a larger number of exoelectrons than the negatively charged surface, indicating that electrons trapped in shallow carrier traps coexist with trapped holes, and exoelectrons are emitted through Auger and/or photoionization processes after their recombination. The exoelectron sources are accumulated by sustain discharges and always decay. The half-life of the decay of the exoelectron sources is relatively long, of the order of a few tens of ms, confirming that the exoelectron emission property at the address discharge in a certain television (TV) field is strongly affected by sustain firings in the previous two TV fields or more. The effects of such a long-term decay of the exoelectron sources should be taken into consideration when designing the driving waveforms of AC-PDPs.