• Media type: E-Article
  • Title: Computing an approximation of the 1-center problem on weighted terrain surfaces
  • Contributor: Lanthier, Mark A.; Nussbaum, Doron; Wang, Tsuo-Jung
  • imprint: Association for Computing Machinery (ACM), 2009
  • Published in: ACM Journal of Experimental Algorithmics
  • Language: English
  • DOI: 10.1145/1412228.1412231
  • ISSN: 1084-6654
  • Keywords: Theoretical Computer Science
  • Origination:
  • Footnote:
  • Description: <jats:p> In this article, we discuss the problem of determining a meeting point of a set of scattered robots <jats:italic>R</jats:italic> = { <jats:italic>r</jats:italic> <jats:sub>1</jats:sub> , <jats:italic>r</jats:italic> <jats:sub>2</jats:sub> ,…, <jats:italic> r <jats:sub>s</jats:sub> </jats:italic> } in a weighted terrain P, which has <jats:italic>n</jats:italic> &gt; <jats:italic>s</jats:italic> triangular faces. Our algorithmic approach is to produce a discretization of P by producing a graph <jats:italic>G</jats:italic> = { <jats:italic> V <jats:sup>G</jats:sup> </jats:italic> , <jats:italic> E <jats:sup>G</jats:sup> </jats:italic> }, which lies on the surface of P. For a chosen vertex <jats:italic>p′</jats:italic> ∈ <jats:italic> V <jats:sup>G</jats:sup> </jats:italic> , we define ‖Π( <jats:italic> r <jats:sub>i</jats:sub> </jats:italic> , <jats:italic>p′</jats:italic> )‖ as the minimum weight cost of traveling from <jats:italic> r <jats:sub>i</jats:sub> </jats:italic> to <jats:italic>p′</jats:italic> . We show that min <jats:sub> <jats:italic>p′</jats:italic> ∈ <jats:italic> V <jats:sup>G</jats:sup> </jats:italic> </jats:sub> {max <jats:sub> 1≤ <jats:italic>i</jats:italic> ≤ <jats:italic>s</jats:italic> </jats:sub> {‖Π( <jats:italic> r <jats:sub>i</jats:sub> </jats:italic> , <jats:italic>p′</jats:italic> )‖}} ≤ min <jats:sub> <jats:italic>p</jats:italic> *∈P </jats:sub> {max <jats:sub> 1≤ <jats:italic>i</jats:italic> ≤ <jats:italic>s</jats:italic> </jats:sub> {‖Π( <jats:italic> r <jats:sub>i</jats:sub> </jats:italic> , <jats:italic>p</jats:italic> *)‖}} + 2 <jats:italic>W</jats:italic> | <jats:italic>L</jats:italic> |, where <jats:italic>L</jats:italic> is the longest edge of P, <jats:italic>W</jats:italic> is the maximum cost weight of a face of P, and <jats:italic>p</jats:italic> * is the optimal solution. Our algorithm requires <jats:italic>O</jats:italic> ( <jats:italic>snm</jats:italic> log( <jats:italic>snm</jats:italic> ) + <jats:italic>snm</jats:italic> <jats:sup>2</jats:sup> ) time to run, where <jats:italic>m</jats:italic> = <jats:italic>n</jats:italic> in the Euclidean metric and <jats:italic>m</jats:italic> = <jats:italic>n</jats:italic> <jats:sup>2</jats:sup> in the weighted metric. However, we show, through experimentation, that only a constant value of <jats:italic>m</jats:italic> is required (e.g., m = 8) in order to produce very accurate solutions (&lt; 1% error). Hence, for typical terrain data, the expected running time of our algorithm is <jats:italic>O</jats:italic> ( <jats:italic>sn</jats:italic> log( <jats:italic>sn</jats:italic> )). Also, as part of our experiments, we show that by using geometrical subsets (i.e., 2D/3D convex hulls, 2D/3D bounding boxes, and random selection) of the robots we can improve the running time for finding <jats:italic>p′</jats:italic> , with minimal or no additional accuracy error when comparing <jats:italic>p′</jats:italic> to <jats:italic>p</jats:italic> *. </jats:p>