• Media type: E-Article
  • Title: Dynamic Modeling of the Reaction Mechanism in a Li/O2 Cell: Influence of a Redox-Mediator
  • Contributor: Grübl, Daniel; Bergner, Benjamin; Janek, Jürgen; Bessler, Wolfgang G.
  • imprint: The Electrochemical Society, 2015
  • Published in: ECS Meeting Abstracts
  • Language: Not determined
  • DOI: 10.1149/ma2015-02/3/254
  • ISSN: 2151-2043
  • Keywords: General Medicine
  • Origination:
  • Footnote:
  • Description: <jats:p>Interest and research in metal-air batteries is ongoing on a high level due to their high theoretical energy density and potential low-cost materials. Most research activities are performed in the field of lithium-oxygen chemistry with organic electrolytes. This system suffers high overpotentials during charge, indicating asymmetrical charge/discharge reaction mechanisms. High charge overpotentials low the energy efficiency and can increase potential-driven side reactions (e.g., electrolyte decomposition). In order to reduce charge overpotentials, the use of redox mediators has been proposed. Different redox mediators have been demonstrated, such as, TTF [1], LiI [2] and FePc [3]. Bergner et al. introduced 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) as redox mediator [4], which will be further investigated in the present study. </jats:p> <jats:p>In order to further understand the mechanism of redox mediators, we present a continuum modeling study of a lithium-oxygen cell. The one-dimensional computational domain consists of a gas reservoir filled with oxygen, a porous carbon cathode flooded with an organic electrolyte, a porous separator, and a lithium metal anode. The model includes a detailed description of the electrochemistry in the cathode. During discharge, gaseous oxygen dissolves at the interface between the closed gas reservoir and the cathode (O<jats:sub>2</jats:sub>,gas ⇄ O<jats:sub>2</jats:sub>,dissolved). Following, a multi-step mechanism is implemented involving lithium superoxide as intermediate (Li<jats:sup>+</jats:sup> + O<jats:sub>2 </jats:sub>+ e<jats:sup>– </jats:sup>⇄ LiO<jats:sub>2</jats:sub>), followed by the formation Li<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> by chemical disproportion of LiO<jats:sub>2</jats:sub> (2LiO<jats:sub>2</jats:sub> ⇄ Li<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> + O<jats:sub>2</jats:sub>). In the anode the metallic lithium reacts to lithium ions (Li ⇄ Li<jats:sup>+ </jats:sup>+ e<jats:sup>–</jats:sup>). This mechanism is complemented by charge-transfer of the TEMPO redox mediator (TEMPO ⇄ TEMPO<jats:sup>+ </jats:sup>+ e<jats:sup>–</jats:sup>), allowing for direct reduction of the lithium peroxide upon charge (Li<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> + 2 TEMPO<jats:sup>+</jats:sup> ⇄ 2 Li<jats:sup>+</jats:sup> + O<jats:sub>2</jats:sub>+ TEMPO). The model is parameterized using experimental data [1]. Galvanostatic discharge and charge simulations reveal the advantage of using a redox-mediator. The electrochemical reaction mechanism and the crystal growth of the sodium superoxide within the cathode is quantified. </jats:p> <jats:p> <jats:bold>Figure </jats:bold> <jats:bold>1</jats:bold> <jats:bold>: </jats:bold>Discharge (left) and charge mechanism involving a redox-mediator (right) in a Li-O<jats:sub>2 </jats:sub>cathode. </jats:p> <jats:p>[1] Y. Chen, S. A. Freunberger, Z. Peng, O. Fontaine, P. Bruce, Nature Chemistry 5, 489 (2013). </jats:p> <jats:p>[2] H.-D. Lim, H. Song, J. Kim, H. Gwon, Y. Bae, K.-Y. Park, J. Hong, H. Kim, T. Kim, Y. H. Kim, X. Lepró, R. Ovalle-Robles, R. H. Baughman, and K. Kang, Angew. Chem. 126, 4007–4012 (2014). </jats:p> <jats:p>[3] D. Sun, Y. Shen, W. Zhang, L. Yu, Z. Yi, W. Yin, D. Wang, Y. Huang, J. Wang, D. Wang, and J. B. Goodenough, J. Am. Chem. Soc. 136, 8941–8946 (2014). </jats:p> <jats:p>[4] B. J. Bergner, A. Schürmann, K. Peppler, A. Garsuch, and J. Janek, “TEMPO: A Mobile Catalyst for Rechargeable Li-O<jats:sub>2</jats:sub> Batteries,” J. Am. Chem. Soc. 136, 15054–15064 (2014).</jats:p> <jats:p /> <jats:p> <jats:inline-formula> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="254fig1.jpeg" xlink:type="simple" /> </jats:inline-formula> </jats:p> <jats:p>Figure 1</jats:p> <jats:p />
  • Access State: Open Access