• Media type: E-Article
  • Title: A New Approach to Carbon Dioxide Utilization: The Carbon Molten Air Battery
  • Contributor: Licht, Stuart; Johnson, Marcus; Lefler, Matthew J.; Vicini, Juan
  • imprint: The Electrochemical Society, 2017
  • Published in: ECS Meeting Abstracts
  • Language: Not determined
  • DOI: 10.1149/ma2017-01/2/184
  • ISSN: 2151-2043
  • Keywords: General Medicine
  • Origination:
  • Footnote:
  • Description: <jats:p> As the levels of carbon dioxide (CO<jats:sub>2</jats:sub>) increase in the Earth’s atmosphere, the effects on climate change become increasingly apparent. With the demand to reduce our dependence on fossils fuels and lower our carbon emissions, a transition to renewable energy sources is necessary. Cost effective large-scale electrical energy storage must be established for renewable energy to become a sustainable option for the future. We've previously shown that carbon dioxide can be captured directly from the air at solar efficiencies as high as 50%, and that carbon dioxide associated with cement formation and the production of other commodities, such as ammonia and iron, can be electrochemically avoided in the STEP process.<jats:sup>1-6</jats:sup> </jats:p> <jats:p>The carbon molten air battery, presented by our group in late 2013,<jats:sup>7</jats:sup> as one of a new class of rechargeable “molten air” batteries that utilize a molten electrolyte and a quasi-reversible air electrode,<jats:sup>7-10</jats:sup> is attractive due to its scalability, location flexibility, and construction from readily available resources, providing a battery that can be useful for large scale applications, such as the storage of renewable electricity. </jats:p> <jats:p>Uncommonly, the carbon molten air battery can utilize carbon dioxide directly from the air:<jats:sup>7,11-18</jats:sup> </jats:p> <jats:p>charging: CO<jats:sub>2(g)</jats:sub> → C<jats:sub>(solid)</jats:sub> + O<jats:sub>2(g) </jats:sub>(1) </jats:p> <jats:p>discharging: C<jats:sub>(solid)</jats:sub> + O<jats:sub>2(g)</jats:sub> → CO<jats:sub>2(g) </jats:sub>(2) </jats:p> <jats:p>More specifically, in a molten carbonate electrolyte containing added oxide, such as lithium carbonate with lithium oxide, the 4 electron charging reaction eq. 1 approaches 100% faradic efficiency and can be described as the following two equations: </jats:p> <jats:p>O<jats:sup>2-</jats:sup> <jats:sub>(dissolved)</jats:sub> + CO<jats:sub>2(g)</jats:sub> → CO<jats:sub>3</jats:sub> <jats:sup>2-</jats:sup> <jats:sub>(molten)</jats:sub> <jats:sup> </jats:sup>(1a) </jats:p> <jats:p>CO<jats:sub>3</jats:sub> <jats:sup>2-</jats:sup> <jats:sub>(molten)</jats:sub> → C<jats:sub>(solid)</jats:sub> + O<jats:sub>2(g)</jats:sub> + O<jats:sup>2-</jats:sup> <jats:sub>(dissolved)</jats:sub> <jats:sup> </jats:sup>(1b) </jats:p> <jats:p>Using carbon formed directly from the CO<jats:sub>2</jats:sub>in our earth’s atmosphere, the carbon molten air battery is a viable system to provide large-scale energy storage. </jats:p> <jats:p /> <jats:p /> <jats:p> <jats:bold>References</jats:bold> </jats:p> <jats:p> <jats:sup>1</jats:sup>Licht, STEP generation of energetic molecules: A solar chemical process to end anthropogenic global warming, </jats:p> <jats:p> <jats:bold> <jats:italic>J. Phys. Chem.</jats:italic>, C</jats:bold>, 113, 16283 (2009). </jats:p> <jats:p> <jats:sup>2</jats:sup>Licht, Efficient Solar-Driven Synthesis, Carbon Capture, and Desalinization, STEP: Solar Thermal Electrochemical Production of Fuels, Metals, Bleach </jats:p> <jats:p> <jats:bold> <jats:italic>Advanced Materials</jats:italic> </jats:bold>,<jats:italic>47</jats:italic>, 5592 (2011). </jats:p> <jats:p> <jats:sup>3</jats:sup>Licht, Wu, Hettige, Wang, Lau,<jats:sup> </jats:sup>Asercion, Stuart, STEP Cement: Solar Thermal Electrochemical Production of CaO without CO<jats:sub>2</jats:sub>emission, </jats:p> <jats:p> <jats:bold> <jats:italic>Chemical Communications</jats:italic> </jats:bold>, <jats:bold>48</jats:bold>, 6019 (2012). </jats:p> <jats:p> <jats:sup>4</jats:sup>Licht, Cui, Wang, Li, Lau, Liu, Ammonia synthesis by N<jats:sub>2</jats:sub> and steam electrolysis in molten hydroxide suspensions of nanoscale Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, </jats:p> <jats:p> <jats:bold> <jats:italic>Science, </jats:italic> </jats:bold> <jats:bold>345</jats:bold>, 637 (2014). </jats:p> <jats:p> <jats:sup>5</jats:sup>Cui,<jats:sup> </jats:sup> Zhang, Liu, Liu,<jats:sup> </jats:sup>Xiang,<jats:sup> </jats:sup> Liu, Xin, Lefler, Licht, Electrochemical synthesis of ammonia directly from N<jats:sub>2</jats:sub> and water over iron-based catalysts supported on activated carbons<jats:bold>,</jats:bold> </jats:p> <jats:p> <jats:bold> <jats:italic>Green Chemistry</jats:italic> </jats:bold>,<jats:bold>2 </jats:bold>DOI: 10.1039/C6GC02386J<jats:bold> </jats:bold>(2016). </jats:p> <jats:p> <jats:sup>6</jats:sup>Li, Wang, Licht, <jats:italic>Sustainable Electrochemical Synthesis of large grain or catalyst sized iron</jats:italic> <jats:bold>,<jats:italic> </jats:italic> </jats:bold> </jats:p> <jats:p> <jats:bold> <jats:italic>J. Sustainable Metallurgy</jats:italic> </jats:bold>,<jats:bold>2</jats:bold>, 405<jats:italic> </jats:italic>(2016). </jats:p> <jats:p> <jats:sup>7</jats:sup>Licht, Cui, Stuart, Wang, Lau, Molten Air Batteries - A new, highest energy class of rechargeable batteries<jats:bold>,<jats:italic> </jats:italic> </jats:bold> </jats:p> <jats:p> <jats:bold> <jats:italic>Energy &amp; Environmental Science</jats:italic> </jats:bold>,<jats:bold>6</jats:bold>, 3646<jats:italic> </jats:italic>(2013). </jats:p> <jats:p> <jats:sup>8</jats:sup>Liu, Li, Cui, Liu<jats:sup> </jats:sup>, Hao, Guo, Pe. Xu, Licht, Critical advances for the iron molten air battery: A new lowest temperature, rechargeable, ternary electrolyte domain<jats:bold>,</jats:bold> </jats:p> <jats:p> <jats:bold> <jats:italic>J. Materials Chemistry, A</jats:italic> </jats:bold>,<jats:bold>3</jats:bold>, 21039<jats:italic> </jats:italic>(2015); <jats:italic>ibid,</jats:italic> <jats:bold>2</jats:bold>, 10577<jats:italic> </jats:italic>(2014).<jats:bold> <jats:italic /> </jats:bold> </jats:p> <jats:p> <jats:sup>9</jats:sup>Cui,<jats:sup> </jats:sup> Xin, Liu,<jats:sup> </jats:sup> Liu,<jats:sup> </jats:sup> Hao,<jats:sup> </jats:sup> Guo, Licht, Improved cycle iron molten air battery performance using a robust fin air electrode<jats:bold>,”<jats:italic> </jats:italic> </jats:bold> </jats:p> <jats:p> <jats:bold> <jats:italic>J. Electrochem. Soc.</jats:italic> </jats:bold>,<jats:italic>in press </jats:italic>(2016). </jats:p> <jats:p> <jats:sup>10</jats:sup>Cui,<jats:sup> </jats:sup>Xiang, Liu,<jats:sup> </jats:sup> Xin, Liu Licht, A novel rechargeable zinc-air battery with molten salt electrolyte, </jats:p> <jats:p> <jats:bold> <jats:italic>J. Power. Sources</jats:italic> </jats:bold>,<jats:italic>in press </jats:italic>(2017). </jats:p> <jats:p> <jats:sup>11</jats:sup>Licht, Cui, Wang, STEP Carbon Capture: the barium advantage<jats:bold>,</jats:bold> </jats:p> <jats:p> <jats:bold> <jats:italic>J. CO<jats:sub>2</jats:sub> Utilization</jats:italic> </jats:bold>,<jats:bold>1</jats:bold>, 58<jats:italic> </jats:italic>(2013). </jats:p> <jats:p> <jats:sup>12</jats:sup>Ren, Li, Lau, Gonzalez-Urbina, Licht, One-pot synthesis of carbon nanofibers from CO<jats:sub>2</jats:sub>, </jats:p> <jats:p> <jats:bold> <jats:italic>Nano Letters</jats:italic> </jats:bold> <jats:bold>,</jats:bold> <jats:bold> 15</jats:bold>, 6142 (2015). </jats:p> <jats:p> <jats:sup>13</jats:sup>Ren, Lau, Lefler, S. Licht, The minimum electrolytic energy needed to convert carbon dioxide by electrolysis in carbonate melts, </jats:p> <jats:p> <jats:bold> <jats:italic>J. Phys. Chem.</jats:italic> </jats:bold> <jats:bold>, C,</jats:bold> <jats:bold> 119</jats:bold>, 23342 (2015). </jats:p> <jats:p> <jats:sup>14</jats:sup>Licht, Douglas, Ren, Carter, Lefler, Pint, Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes, </jats:p> <jats:p> <jats:bold> <jats:italic>ACS Central Science</jats:italic> </jats:bold> <jats:bold>,</jats:bold> <jats:bold> 2</jats:bold>, 162 (2015). </jats:p> <jats:p> <jats:sup>15</jats:sup>Ren, Lau, Lefler, Licht, The minimum electrolytic energy needed to convert carbon dioxide by electrolysis in carbonate melts, </jats:p> <jats:p> <jats:bold> <jats:italic>J. Phys. Chem.</jats:italic> </jats:bold> <jats:bold>, C,</jats:bold> <jats:bold> 119</jats:bold>, 23342 (2015). </jats:p> <jats:p> <jats:sup>16</jats:sup>Lau, Dey, Licht, Thermodynamic assessment of CO<jats:sub>2</jats:sub>to carbon nanofiber transformation for carbon sequestration in a combined cycle gas or a coal power plant, </jats:p> <jats:p> <jats:bold> <jats:italic>Energy Conservation and Management</jats:italic> </jats:bold> <jats:bold>,</jats:bold> <jats:bold> 122</jats:bold>, 400 (2016). </jats:p> <jats:p> <jats:sup>17</jats:sup>Wu, Li, Ji, Liu, Li, Yuan, Zhang, Ren, Lefler, Wang, Licht, One-Pot Synthesis of Nanostructured Carbon Material from Carbon Dioxide via Electrolysis in Molten Carbonate Salts, </jats:p> <jats:p> <jats:bold> <jats:italic>Carbon</jats:italic> </jats:bold> <jats:bold>,</jats:bold> <jats:bold> 6</jats:bold>, 27760 (2016). </jats:p> <jats:p> <jats:sup>18</jats:sup>Ren, Licht, Tracking airborne CO<jats:sub>2</jats:sub>mitigation and low cost transformation into valuable carbon nanotubes, </jats:p> <jats:p> <jats:bold> <jats:italic>Scientific Reports</jats:italic> </jats:bold> <jats:bold>,</jats:bold> <jats:bold> 106</jats:bold>, 208 (2016). </jats:p> <jats:p /> <jats:p /> <jats:p> <jats:bold>Figure:</jats:bold> Variations of the Molten Battery.</jats:p> <jats:p> </jats:p> <jats:p> <jats:inline-formula> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="184fig1.jpeg" xlink:type="simple" /> </jats:inline-formula> </jats:p> <jats:p>Figure 1</jats:p> <jats:p />
  • Access State: Open Access