• Media type: E-Article
  • Title: Effect of Pore Thickness and the State of Polarization on the Optical Properties of Hexagonal Nanoarray of Au/Nanoporous Anodic Alumina Membrane
  • Contributor: Shaban, Mohamed
  • Published: Hindawi Limited, 2015
  • Published in: Journal of Nanomaterials, 2015 (2015), Seite 1-9
  • Language: English
  • DOI: 10.1155/2015/347486
  • ISSN: 1687-4110; 1687-4129
  • Keywords: General Materials Science
  • Origination:
  • Footnote:
  • Description: Hexagonal nanoarrays of Au particles were deposited on nanoporous anodic alumina membrane (NAAM) utilizing r.f. magnetron sputtering. The thickness of the NAAMs is adjusted by changing the second anodization time from 5 min to 20 min. The surface morphology, composition, and optical properties are characterized by using SEM, EDX, and spectrophotometer, respectively. The effects of the NAAM thickness and state of polarization on the morphological changes and on the optical properties of the fabricated nanoarrays were addressed. According to the measured optical spectra, the rate of decrease of NAAMs refractive index was found to be 3.825 × 10−4 nm−1. Using the modified Kubelka-Munk radiative transfer model, the energy gap of NAAMs was calculated from diffused reflectance and was decreased from 1.682 to 1.376 as the anodization time increased from 5 to 20 min. Also, the saturation of interference fringes is substantially enhanced, and field enhancement can be achieved due to the excitation and constructive interference of surface plasmon waves by coating NAAMs with the hexagonal nanoarrays of Au. Based on the advantages of the fabrication approach and the enhanced and controlled properties, this new generation of samples can be used as promising building blocks for nanophotonic and nanoelectronics devices.
  • Access State: Open Access