Description:
In this article, a rotary valve is developed to obtain accurate high-frequency sinusoidal vibration waveforms. Then, a uniaxial electro-hydraulic shaking table controlled by a set of parallel rotary valves is constructed, which can superpose the sinusoidal vibration waveforms. The non-sinusoidal vibration waveforms including triangular vibration waveform, rectangular vibration waveform, sawtooth vibration waveform and trapezoidal vibration waveform are generated by adjusting the spool rotation speed based on the Fourier series. The results show that with one rotary valve, the uniaxial electro-hydraulic shaking table can output accurate high-frequency sinusoidal vibration waveforms and the total harmonic distortion is less than 1% at high vibration frequency. Compared with the standard vibration waveform, the error of the generated vibration waveform is very small. For the rectangular vibration waveform and sawtooth vibration waveform, the error is less than 6%, and for the triangular vibration waveform and trapezoidal vibration waveform, the error is less than 3%. The impacts of the working conditions on the error of the generated vibration waveform are very small. The proposed method for the accurate high-frequency non-sinusoidal vibration waveform is very effective and can be applied in high vibration frequency and different load masses. With the increase of the supply pressure, the amplitude of the generated vibration waveforms increases, while the error changes in a rather narrow range. The amplitude can be adjusted by changing the supply pressure with almost no effect on the accuracy of the vibration waveform.