Published:
Springer Science and Business Media LLC, 2022
Published in:
Orphanet Journal of Rare Diseases, 17 (2022) 1
Language:
English
DOI:
10.1186/s13023-022-02441-3
ISSN:
1750-1172
Origination:
Footnote:
Description:
Abstract Background Fabry disease (FD) is a rare X-linked, lysosomal storage disorder caused by mutations in the alpha-galactosidase gene and characterized by neurological, cutaneous, renal, cardiovascular, cochleo-vestibular and ocular manifestations. The aim of this study is to characterize morphological, functional and autophagy-lysosome pathway alterations of the ocular surface in FD patients. Methods Eleven subjects with a diagnosis of FD and fifteen healthy control subjects were examined. All patients underwent ocular surface slit lamp examination, corneal aesthesiometry and in vivo confocal laser-scanning microscopy (CCM). Conjunctival impression cytology was performed in six FD patients and six controls, to assess for expression of two markers of the autophagy-lysosome pathway: the microtubule-associated protein light chain 3 (LC3) and lysosome-associated membrane protein 2 (LAMP2). Results Cornea verticillata and increased conjunctival vessel tortuosity were detected respectively in 67% and 33% of patients with FD. Compared with healthy subjects, patients affected by FD showed a significant reduction in corneal nerve fiber length, density and nerve branching on CCM and a significantly increased expression of LC3 on conjunctival impression cytology (p < 0.001). No changes were observed in the conjunctival expression of LAMP2 between the two groups. Conclusions This study shows that FD is associated with ocular surface alterations including corneal and conjunctival morphology, innervation and vascularization changes. Our data demonstrate an increased expression of LC3 protein in patients with FD, suggesting that alteration of the autophagy-lysosome pathway may play a role in the occurrence of ocular manifestations.