• Media type: E-Article
  • Title: Structure solution and refinement of stacking-faulted NiCl(OH)
  • Contributor: Bette, Sebastian; Dinnebier, Robert E.; Freyer, Daniela
  • imprint: International Union of Crystallography (IUCr), 2015
  • Published in: Journal of Applied Crystallography
  • Language: Not determined
  • DOI: 10.1107/s1600576715017719
  • ISSN: 1600-5767
  • Keywords: General Biochemistry, Genetics and Molecular Biology
  • Origination:
  • Footnote:
  • Description: <jats:p>Two samples of pure NiCl(OH) were produced by hydrothermal synthesis and characterized by chemical analysis, IR spectroscopy, high-resolution laboratory X-ray powder diffraction and scanning electron microscopy. Layers composed of edge-sharing distorted NiCl<jats:sub>6<jats:italic>x</jats:italic></jats:sub>(OH)<jats:sub>6−6<jats:italic>x</jats:italic></jats:sub>octahedra were identified as the main building blocks of the crystal structure. NiCl(OH) is isostructural to CoOOH and crystallizes in space group<jats:italic>R</jats:italic>\overline{{3}}<jats:italic>m</jats:italic>[<jats:italic>a</jats:italic>= 3.2606 (1),<jats:italic>c</jats:italic>= 17.0062 (9) Å]. Each sample exhibits faults in the stacking pattern of the layers. Crystal intergrowth of (<jats:italic>A</jats:italic>γ<jats:italic>B</jats:italic>)(<jats:italic>B</jats:italic>α<jats:italic>C</jats:italic>)(<jats:italic>C</jats:italic>β<jats:italic>A</jats:italic>) and (<jats:italic>A</jats:italic>γ<jats:italic>B</jats:italic>)(<jats:italic>A</jats:italic>γ<jats:italic>B</jats:italic>) [C6 like, β-Ni(OH)<jats:sub>2</jats:sub>related] stacked layers was identified as the main feature of the microstructure of NiCl(OH) by<jats:italic>DIFFaX</jats:italic>simulations. A recursion routine for creating distinct stacking patterns of rigid-body-like layers in real space with distinct faults (global optimization) and a Rietveld-compatible approach (local optimization) was realized and implemented in a macro for the program<jats:italic>TOPAS</jats:italic>for the first time. This routine enables a recursive creation of supercells containing (<jats:italic>A</jats:italic>γ<jats:italic>B</jats:italic>)(<jats:italic>B</jats:italic>α<jats:italic>C</jats:italic>)(<jats:italic>C</jats:italic>β<jats:italic>A</jats:italic>), (<jats:italic>A</jats:italic>γ<jats:italic>B</jats:italic>)(<jats:italic>A</jats:italic>γ<jats:italic>B</jats:italic>) and (<jats:italic>C</jats:italic>β<jats:italic>A</jats:italic>)(<jats:italic>B</jats:italic>α<jats:italic>C</jats:italic>)(<jats:italic>A</jats:italic>γ<jats:italic>B</jats:italic>) stacking patterns, according to user-defined transition probabilities. Hence it is an enhancement of the few previously published Rietveld-compatible approaches. This routine was applied successfully to create and adapt a detailed microstructure model to the measured data of two stacking-faulted NiCl(OH) samples. The obtained microstructure models were supported by high-resolution scanning electron microscopy images.</jats:p>