• Media type: E-Article
  • Title: The relevance of food peak architecture in trophic interactions
  • Contributor: Vatka, Emma; Orell, Markku; Rytkönen, Seppo
  • imprint: Wiley, 2016
  • Published in: Global Change Biology
  • Language: English
  • DOI: 10.1111/gcb.13144
  • ISSN: 1354-1013; 1365-2486
  • Keywords: General Environmental Science ; Ecology ; Environmental Chemistry ; Global and Planetary Change
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title><jats:p>Phenological shifts and associated changes in the temporal match between trophic levels have been a major focus of the study of ecological consequences of climate change. Previously, the food peak has been thought to respond as an entity to warming temperatures. However, food peak architecture, that is, timings and abundances of prey species and the level of synchrony between them, determines the timing and shape of the food peak. We demonstrate this with a case example of three passerine prey species and their predator. We explored temporal trends in the timing, height, width, and peakedness of prey availabilities and explained their variation with food peak architecture and ambient temperatures of prebreeding and breeding seasons. We found a temporal match between the predator's breeding schedule and food availability. Temporal trends in the timing of the food peak or in the synchrony between the prey species were not found. However, the food peak has become wider and more peaked over time. With more peaked food availabilities, predator's breeding success will depend more on the temporal match between its breeding schedule and the food peak, ultimately affecting the timing of breeding in the predator population. The height and width of the food peak depended on the abundances and breeding season lengths of individual prey species and their reciprocal synchronies. Peakednesses of separate prey species' availability distributions alone explained the peakedness of the food peak. Timing and quantity of food production were associated with temperatures of various time periods with variable relevance in different prey species. Alternating abundances of early and late breeding prey species caused high annual fluctuation in the timing of the food peak. Interestingly, the food peak may become later even when prey species' schedules are advanced. Climate warming can thus produce unexpected changes in the food availabilities, intervening in trophic interactions.</jats:p>