Published in:
The Plant Journal, 53 (2008) 2, Seite 287-299
Language:
English
DOI:
10.1111/j.1365-313x.2007.03342.x
ISSN:
0960-7412;
1365-313X
Origination:
Footnote:
Description:
SummaryThe putative two‐pore Ca2+ channel TPC1 has been suggested to be involved in responses to abiotic and biotic stresses. We show that AtTPC1 co‐localizes with the K+‐selective channel AtTPK1 in the vacuolar membrane. Loss of AtTPC1 abolished Ca2+‐activated slow vacuolar (SV) currents, which were increased in AtTPC1‐over‐expressing Arabidopsis compared to the wild‐type. A Ca2+‐insensitive vacuolar cation channel, as yet uncharacterized, could be resolved in tpc1‐2 knockout plants. The kinetics of ABA‐ and CO2‐induced stomatal closure were similar in wild‐type and tpc1‐2 knockout plants, excluding a role of SV channels in guard‐cell signalling in response to these physiological stimuli. ABA‐, K+‐, and Ca2+‐dependent root growth phenotypes were not changed in tpc1‐2 compared to wild‐type plants. Given the permeability of SV channels to mono‐ and divalent cations, the question arises as to whether TPC1 in vivo represents a pathway for Ca2+ entry into the cytosol. Ca2+ responses as measured in aequorin‐expressing wild‐type, tpc1‐2 knockout and TPC1‐over‐expressing plants disprove a contribution of TPC1 to any of the stimulus‐induced Ca2+ signals tested, including abiotic stresses (cold, hyperosmotic, salt and oxidative), elevation in extracellular Ca2+ concentration and biotic factors (elf18, flg22). In good agreement, stimulus‐ and Ca2+‐dependent gene activation was not affected by alterations in TPC1 expression. Together with our finding that the loss of TPC1 did not change the activity of hyperpolarization‐activated Ca2+‐permeable channels in the plasma membrane, we conclude that TPC1, under physiological conditions, functions as a vacuolar cation channel without a major impact on cytosolic Ca2+ homeostasis.