• Media type: E-Article
  • Title: Near‐Infrared and Upconversion Luminescence in Er:Y2O3 Ceramics under 1.5 μm Excitation
  • Contributor: Brown, Ei E.; Hömmerich, Uwe; Bluiett, Althea; Kucera, Courtney; Ballato, John; Trivedi, Sudhir
  • imprint: Wiley, 2014
  • Published in: Journal of the American Ceramic Society
  • Language: English
  • DOI: 10.1111/jace.12898
  • ISSN: 0002-7820; 1551-2916
  • Origination:
  • Footnote:
  • Description: <jats:p>Results of the spectroscopic characteristics and upconversion luminescence in <jats:styled-content style="fixed-case"><jats:roman>Er</jats:roman></jats:styled-content><jats:sup>3+</jats:sup> doped yttria (<jats:styled-content style="fixed-case"><jats:roman>Y</jats:roman></jats:styled-content><jats:sub>2</jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content><jats:sub>3</jats:sub>) transparent ceramics prepared by a modified two‐step sintering method are presented. The near‐infrared (1.5 μm) luminescence properties were evaluated as a function of <jats:styled-content style="fixed-case"><jats:roman>Er</jats:roman></jats:styled-content><jats:sup>3+</jats:sup> concentration. Judd–Ofelt intensity parameters, radiative rates, branching ratios, and emission lifetimes were determined and compared with results reported for <jats:styled-content style="fixed-case"><jats:roman>Er</jats:roman></jats:styled-content><jats:sup>3+</jats:sup>‐doped <jats:styled-content style="fixed-case"><jats:roman>Y</jats:roman></jats:styled-content><jats:sub>2</jats:sub><jats:styled-content style="fixed-case"><jats:roman>O</jats:roman></jats:styled-content><jats:sub>3</jats:sub> single crystal and nanocrystals. Following pumping at 1.532 μm, weak blue (~0.41 μm, <jats:sup>2</jats:sup><jats:styled-content style="fixed-case"><jats:roman>H</jats:roman></jats:styled-content><jats:sub>9/2</jats:sub> → <jats:sup>4</jats:sup><jats:styled-content style="fixed-case"><jats:roman>I</jats:roman></jats:styled-content><jats:sub>15/2</jats:sub>), strong green (~0.56 μm, <jats:sup>2</jats:sup>H<jats:sub>11/2</jats:sub>, <jats:sup>4</jats:sup>S<jats:sub>3/2</jats:sub> → <jats:sup>4</jats:sup>I<jats:sub>15/2</jats:sub>), and red (~0.67 μm, <jats:sup>4</jats:sup>F<jats:sub>9/2</jats:sub> → <jats:sup>4</jats:sup>I<jats:sub>15/2</jats:sub>) emission bands were observed as well as weak near‐infrared emissions at 0.8 μm (<jats:sup>4</jats:sup>I<jats:sub>9/2</jats:sub> → <jats:sup>4</jats:sup>I<jats:sub>15/2</jats:sub>) and 0.85 μm (<jats:sup>4</jats:sup>S<jats:sub>3/2</jats:sub> → <jats:sup>4</jats:sup>I<jats:sub>13/2</jats:sub>) at room temperature. The upconversion luminescence properties under ~1.5 μm pumping were further investigated through pump power dependence and decay time studies. Sequential two‐photon absorption leads to the <jats:sup>4</jats:sup>I<jats:sub>9/2</jats:sub> upconversion emission, whereas energy‐transfer upconversion is responsible for the emission from the higher excited states <jats:sup>2</jats:sup>H<jats:sub>9/2</jats:sub>, <jats:sup>2</jats:sup>H<jats:sub>11/2</jats:sub>, <jats:sup>4</jats:sup>S<jats:sub>3/2</jats:sub>, and <jats:sup>4</jats:sup>F<jats:sub>9/2</jats:sub>. The enhanced red emission with increasing Er<jats:sup>3+</jats:sup> concentration most likely occurred via the cross‐relaxation process between (<jats:sup>4</jats:sup>F<jats:sub>7/2</jats:sub> → <jats:sup>4</jats:sup>F<jats:sub>9/2</jats:sub>) and (<jats:sup>4</jats:sup>I<jats:sub>11/2</jats:sub> → <jats:sup>4</jats:sup>F<jats:sub>9/2</jats:sub>) transitions, which increased the population of the <jats:sup>4</jats:sup>F<jats:sub>9/2</jats:sub> level.</jats:p>