• Media type: E-Article
  • Title: Simulation of Turbulent Airflow Using a CT Based Upper Airway Model of a Racehorse
  • Contributor: Rakesh, Vineet; Datta, Ashim K.; Ducharme, Normand G.; Pease, Anthony P.
  • imprint: ASME International, 2008
  • Published in: Journal of Biomechanical Engineering
  • Language: English
  • DOI: 10.1115/1.2913338
  • ISSN: 0148-0731; 1528-8951
  • Keywords: Physiology (medical) ; Biomedical Engineering
  • Origination:
  • Footnote:
  • Description: <jats:p>Computational model for airflow through the upper airway of a horse was developed. Previous flow models for human airway do not hold true for horses due to significant differences in anatomy and the high Reynolds number of flow in the equine airway. Moreover, models that simulate the entire respiratory cycle and emphasize on pressures inside the airway in relation to various anatomical diseases are lacking. The geometry of the airway was created by reconstructing images obtained from computed tomography scans of a thoroughbred racehorse. Different geometries for inhalation and exhalation were used for the model based on the difference in the nasopharynx size during the two phases of respiration. The Reynolds averaged Navier–Stokes equations were solved for the isothermal flow with the standard k-ϵ model for turbulence. Transient pressure boundary conditions for the entire breathing cycle were obtained from past experimental studies on live horses. The flow equations were solved in a commercial finite volume solver. The flow rates, computed based on the applied pressure conditions, were compared to experimentally measured flow rates for model validation. Detailed analysis of velocity, pressure, and turbulence characteristics of the flow was done. Velocity magnitudes at various slices during inhalation were found to be higher than corresponding velocity magnitudes during exhalation. The front and middle parts of the nasopharynx were found to have minimum intraluminal pressure in the airway during inhalation. During exhalation, the pressures in the soft palate were higher compared to those in the larynx, epiglottis, and nasopharynx. Turbulent kinetic energy was found to be maximum at the entry to the airway and gradually decreased as the flow moved inside the airway. However, turbulent kinetic energy increased in regions of the airway with abrupt change in area. Based on the analysis of pressure distribution at different sections of the airway, it was concluded that the front part of the nasopharynx requires maximum muscular activity to support it during inhalation. During exhalation, the soft palate is susceptible to displacements due to presence of high pressures. These can serve as critical information for diagnosis and treatment planning of diseases known to affect the soft palate and nasopharynx in horses, and can potentially be useful for human beings.</jats:p>