• Media type: E-Article
  • Title: Function and Regulation of Isoforms of Carbon Monoxide Dehydrogenase/Acetyl Coenzyme A Synthase in Methanosarcina acetivorans
  • Contributor: Matschiavelli, Nicole; Oelgeschläger, Ellen; Cocchiararo, Berardino; Finke, Johannes; Rother, Michael
  • Published: American Society for Microbiology, 2012
  • Published in: Journal of Bacteriology, 194 (2012) 19, Seite 5377-5387
  • Language: English
  • DOI: 10.1128/jb.00881-12
  • ISSN: 0021-9193; 1098-5530
  • Origination:
  • Footnote:
  • Description: ABSTRACT Conversion of acetate to methane (aceticlastic methanogenesis) is an ecologically important process carried out exclusively by methanogenic archaea. An important enzyme for this process as well as for methanogenic growth on carbon monoxide is the five-subunit archaeal CO dehydrogenase/acetyl coenzyme A (CoA) synthase multienzyme complex (CODH/ACS) catalyzing both CO oxidation/CO 2 reduction and cleavage/synthesis of acetyl-CoA. Methanosarcina acetivorans C2A contains two very similar copies of a six-gene operon ( cdh genes) encoding two isoforms of CODH/ACS (Cdh1 and Cdh2) and a single CdhA subunit, CdhA3. To address the role of the CODH/ACS system in M. acetivorans , mutational as well as promoter/reporter gene fusion analyses were conducted. Phenotypic characterization of cdh disruption mutants (three single and double mutants, as well as the triple mutant) revealed a strict requirement of either Cdh1 or Cdh2 for acetotrophic or carboxidotrophic growth, as well as for autotrophy, which demonstrated that both isoforms are bona fide CODH/ACS. While expression of the Cdh2-encoding genes was generally higher than that of genes encoding Cdh1, both appeared to be regulated differentially in response to growth phase and to changing substrate conditions. While dispensable for growth, CdhA3 clearly affected expression of cdh1 , suggesting that it functions in signal perception and transduction rather than in catabolism. The data obtained argue for a functional hierarchy and regulatory cross talk of the CODH/ACS isoforms.
  • Access State: Open Access