• Media type: E-Article
  • Title: 2000 John C. Polanyi Award LectureMother Nature and the molecular Big Bang
  • Contributor: Miller, RJ Dwayne
  • Published: Canadian Science Publishing, 2002
  • Published in: Canadian Journal of Chemistry, 80 (2002) 1, Seite 1-24
  • Language: English
  • DOI: 10.1139/v01-199
  • ISSN: 0008-4042; 1480-3291
  • Keywords: Organic Chemistry ; General Chemistry ; Catalysis
  • Origination:
  • Footnote:
  • Description: Biological molecules are mesoscopic systems that bridge the quantum and classical worlds. At the single molecule level, there are often more than 1 × 104 degrees of freedom that are involved in protein-mediated processes. These molecules are sufficiently large that the bath coordinate convolved to the reaction at an active site is defined by the surrounding protein tertiary structure. In this context, the very interatomic forces that determine the active protein structures create a strongly associated system. Thus, the bath fluctuations leading to reactive crossings involve highly hindered motions within a myriad of local minima that would act to cast the reaction dynamics into the high viscosity limit appropriate to glasses. However, the time scales observed for biological events are orders of magnitude too fast to meet this anticipated categorization. In this context, the apparent deterministic nature of biological processes represents an enormous challenge to our understanding of chemical processes. Somehow Nature has discovered a molecular scaffolding that enables minute amounts of energy to be efficiently channeled to perform biological functions without becoming entrapped in local minima. Clearly, energy derived from chemical processes is highly directed in biological systems. To understand this problem, we must first understand how energy is redistributed among the different degrees of freedom and fully characterize the protein relaxation processes along representative reaction coordinates in relation to these dissipative processes. This paper discusses the development of new nonlinear spectroscopic methods that have enabled interferometric sensitivity to protein motions on femtosecond time scales appropriate to the very fastest motions (i.e., bond breaking or the molecular "Big Bang") out to the slowest relaxation steps. This work has led to the Collective Mode Coupling Model as an explanation of the required reduced dimensionality in biological systems. Within this model, the largest coupling coefficients of the reaction coordinate are to the damped inertial collective modes of the protein defined by the strongly correlated secondary structures. These modes act to guide the reaction along the correct seam(s) in an otherwise highly complex potential energy surface. The mechanism by which biological molecules have been able to harness chemical energy over meso-length scales represents the first step towards higher levels of organization. The new insight afforded by the collective mode mechanism may prove important in understanding this larger issue of scaling in biological systems.Key words: biodynamics, energy transduction, ultrafast spectroscopy, nonlinear spectroscopy, primary processes in biology.