• Media type: E-Article
  • Title: New results on the existence of ground state solutions for generalized quasilinear Schrödinger equations coupled with the Chern–Simons gauge theory
  • Contributor: Xiao, Yingying; Zhu, Chuanxi
  • Published: University of Szeged, 2021
  • Published in: Electronic Journal of Qualitative Theory of Differential Equations (2021) 73, Seite 1-17
  • Language: English
  • DOI: 10.14232/ejqtde.2021.1.73
  • ISSN: 1417-3875
  • Keywords: Applied Mathematics
  • Origination:
  • Footnote:
  • Description: In this paper, we study the following quasilinear Schrödinger equation − Δ u + V ( x ) u − κ u Δ ( u 2 ) + μ h 2 ( | x | ) | x | 2 ( 1 + κ u 2 ) u + μ ( ∫ | x | + ∞ h ( s ) s ( 2 + κ u 2 ( s ) ) u 2 ( s ) d s ) u = f ( u ) in   R 2 , κ > 0 V ∈ C 1 ( R 2 , R )and f ∈ C ( R , R ) By using a constraint minimization of Pohožaev–Nehari type and analytic techniques, we obtain the existence of ground state solutions.
  • Access State: Open Access