• Media type: E-Article
  • Title: Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
  • Contributor: Taguchi, Alexander T.; Baldansuren, Amgalanbaatar; Dikanov, Sergei A.
  • Published: Walter de Gruyter GmbH, 2017
  • Published in: Zeitschrift für Physikalische Chemie, 231 (2017) 4, Seite 725-743
  • Language: English
  • DOI: 10.1515/zpch-2016-0815
  • ISSN: 2196-7156; 0942-9352
  • Keywords: Physical and Theoretical Chemistry
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title> <jats:p>Chlorophylls are an essential class of cofactors found in all photosynthetic organisms. Upon absorbing a photon, the excited state energy of the chlorophyll can either be transferred to another acceptor molecule, or be used to drive electron transfer. When acting as the primary donor in the bacterial photosynthetic reaction center, light-induced charge separation results in the formation of a cationic bacteriochlorophyll dimer. The hyperfine interactions between the unpaired electron of the <jats:sup>15</jats:sup>N labeled bacteriochlorophyll cation radical and its four pyrrole nitrogens are probed with X- and Q-band <jats:sup>15</jats:sup>N HYSCORE spectroscopy in frozen solution. The powder-type HYSCORE shows the basic (<jats:italic>ν</jats:italic> <jats:sub> <jats:italic>α</jats:italic>(<jats:italic>β</jats:italic>)</jats:sub>, <jats:italic>ν</jats:italic> <jats:sub> <jats:italic>β</jats:italic>(<jats:italic>α</jats:italic>)</jats:sub>) cross-features as well as several types of combination cross-features. The nitrogen tensors were resolved in the squared-frequency representation of the HYSCORE spectra, and simulations of the combination peaks allowed for further refinement of the hyperfine coupling constants. The nitrogen tensors were found to have coupling constants <jats:italic>a</jats:italic>=3.28 MHz, <jats:italic>T</jats:italic>=1.23 MHz (<jats:bold>N1</jats:bold> and <jats:bold>N2</jats:bold>), <jats:italic>a</jats:italic>=4.10 MHz, <jats:italic>T</jats:italic>=1.25 MHz (<jats:bold>N3</jats:bold>), and <jats:italic>a</jats:italic>=4.35 MHz, <jats:italic>T</jats:italic>=1.70 MHz (<jats:bold>N4</jats:bold>). The combination features were assigned based on a linear regression analysis of the cross-ridges in the squared-frequency representation as well as spectral simulations. The methodology discussed here will provide an important foundation for analyzing and understanding complex two-dimensional spectra from several <jats:italic>I</jats:italic>=1/2 nuclei.</jats:p>