Down-regulation of COL1A1 inhibits tumor-associated fibroblast activation and mediates matrix remodeling in the tumor microenvironment of breast cancer
You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Article
Title:
Down-regulation of COL1A1 inhibits tumor-associated fibroblast activation and mediates matrix remodeling in the tumor microenvironment of breast cancer
Contributor:
Ma, Bin;
Li, Fangfang;
Ma, Binlin
Published:
Walter de Gruyter GmbH, 2023
Published in:
Open Life Sciences, 18 (2023) 1
Language:
English
DOI:
10.1515/biol-2022-0776
ISSN:
2391-5412
Origination:
Footnote:
Description:
Abstract We investigated the effects of collagen type I alpha 1 (COL1A1) on tumor-associated fibroblast activation and matrix remodeling in the tumor microenvironment of breast cancer. Cells were divided into the blank control, negative control, and siRNA-COL1A1 groups, or HKF control, HKF + exosomes (EXO), HKF + siRNA negative control-EXO, and HKF + siRNA-COL1A1-EXO co-culture groups. Western blot and quantitative real-time PCR detected gene expressions. COL Ⅰ, COL Ⅲ, and TGF-β1 were detected by enzyme-linked immunosorbent assay. We found that compared with blank and negative control groups, COL1A1 expression and the secretion of exosomes by breast cancer cells were inhibited in the siRNA-COL1A1 group. Compared with the HKF control group, the COL Ⅰ, COL Ⅲ, TGF-β1, α-SMA, and fibroblast activation protein (FAP) were increased, while the E-cadherin and CAV-1 were decreased in the HKF + EXO, HKF + siRNA negative control-EXO, and HKF + siRNA-COL1A1-EXO co-culture groups. Compared with HKF + EXO and HKF + siRNA negative control-EXO co-culture groups, the COL Ⅰ, COL Ⅲ, TGF-β1, α-SMA, and FAP were decreased, and the E-cadherin and CAV-1 were increased in the HKF + siRNA-COL1A1-EXO co-culture group. Collectively, COL1A1 down-regulation may inhibit exosome secretion possibly via inhibiting COL Ⅰ and upregulating CAV-1, thereby inhibiting tumor-associated fibroblast activation and matrix remodeling in the tumor microenvironment.