• Media type: E-Article
  • Title: High-efficiency, large-area lattice light-sheet generation by dielectric metasurfaces
  • Contributor: Shi, Fenghua; Wen, Jing; Lei, Dangyuan
  • imprint: Walter de Gruyter GmbH, 2020
  • Published in: Nanophotonics
  • Language: English
  • DOI: 10.1515/nanoph-2020-0227
  • ISSN: 2192-8614; 2192-8606
  • Keywords: Electrical and Electronic Engineering ; Atomic and Molecular Physics, and Optics ; Electronic, Optical and Magnetic Materials ; Biotechnology
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title> <jats:p>Lattice light-sheet microscopy (LLSM) was developed for long-term live-cell imaging with ultra-fine three-dimensional (3D) spatial resolution, high temporal resolution, and low photo-toxicity by illuminating the sample with a thin lattice-like light-sheet. Currently available schemes for generating thin lattice light-sheets often require complex optical designs. Meanwhile, limited by the bulky objective lens and optical components, the light throughput of existing LLSM systems is rather low. To circumvent the above problems, we utilize a dielectric metasurface of a single footprint to replace the conventional illumination modules used in the conventional LLSM and generate a lattice light-sheet with a ~3-fold broader illumination area and a significantly leveraged illumination efficiency, which consequently leads to a larger field of view with a higher temporal resolution at no extra cost of the spatial resolution. We demonstrate that the metasurface can manipulate spatial frequencies of an input laser beam in orthogonal directions independently to break the trade-off between the field of view and illumination efficiency of the lattice light-sheet. Compared to the conventional LLSM, our metasurface module serving as an ultra-compact illumination component for LLSM at an ease will potentially enable a finer spatial resolution with a larger numerical-aperture detection objective lens.</jats:p>
  • Access State: Open Access