• Media type: E-Article
  • Title: Effect of Spent Mushroom Compost of Pleurotus eous Strain P-31 on Growth Performance and Nodulation of Cowpea (Vigna unguiculata Walp.)
  • Contributor: Michael, Wiafe-Kwagyan; Tawia, Odamtten George; Korley, Kortei Nii
  • imprint: Penerbit Universiti Sains Malaysia, 2022
  • Published in: Tropical Life Sciences Research
  • Language: Not determined
  • DOI: 10.21315/tlsr2022.33.3.8
  • ISSN: 1985-3718; 2180-4249
  • Keywords: General Agricultural and Biological Sciences ; General Biochemistry, Genetics and Molecular Biology ; General Medicine
  • Origination:
  • Footnote:
  • Description: <jats:p>This study investigated the influence of spent mushroom compost (SMC) of Pleurotus eous strain P-31 on the growth, development and soil rhizobial population associated with nodulation of cowpea (Vigna unguiculata Walp.) black-eye variety, under greenhouse conditions at 28 ± 2ºC for 12 weeks. Sandy loam soil was combined with different percentages of SMC to obtain the following combinations (0%, 5%, 10%, 15%, 20%, 25%, 30%, 100%). Lower concentrations, SMC (5%–25%) promoted plant height, number of leaves, total leaf area, total chlorophyll, chlorophyll a and b as well as dry matter accumulation of shoot and roots after 12 weeks at 28°C–32°C. Soil: SMC concentrations beyond 30% SMC variably depressed the various developmental criteria used in assessing growth. The trend obtained in the assessed parameter were statistically significant (p ≤ 0.05) in decreasing order: 5% SMC &lt; 10% SMC &lt; 15% SMC, &lt; 20% SMC, &lt; 25% SMC, &lt; 30% SMC, &lt; 100% SMC. The cowpea plant efficiently assimilated nitrogen (N2) from the soil: compost. Nodule formation by cowpea was commensurate with increasing percentage of spent compost was highest in 5% SMC (89/plant) and declined with increasing proportion of SMC: soil mixture up to 25% but nodulation of cowpea plant was completely depressed in the absence of soil (100% SMC) pots. The Nodule Index data showed that the best nodule size and weight were formed by cowpea growing in medium containing 5% SMC (18) and 10% SMC (12) and thereafter declined. The nodules were red to pinkish in colour epitomising leghaemoglobin which could initiate nodulation and N2 fixation in soil. This study has shown that 5% SMC–20% SMC could provide favourable conditions in soil as a biofertiliser to improve the growth, development and nodulation of cowpea.</jats:p>
  • Access State: Open Access