• Media type: E-Article
  • Title: Experimental Investigation of a Continuous Reactor for CO2 Capture and CaCO3 Precipitation
  • Contributor: Tiefenthaler, Johannes; Mazzotti, Marco
  • imprint: Frontiers Media SA, 2022
  • Published in: Frontiers in Chemical Engineering
  • Language: Not determined
  • DOI: 10.3389/fceng.2022.830284
  • ISSN: 2673-2718
  • Keywords: Industrial and Manufacturing Engineering ; Materials Science (miscellaneous) ; Business and International Management
  • Origination:
  • Footnote:
  • Description: <jats:p>In a climate neutral world, the life cycle greenhouse gas (GHG) emissions of precipitated calcium carbonate (PCC) have to be reduced towards net-zero. Mineral carbonation processes allow to do so by replacing the carbon rich calcium source limestone by carbon free industrial mineral wastes. Various processes have been investigated in literature. They exhibit the benefit of little to no feedstock related emissions and high energy savings due to the avoidance of the CaCO<jats:sub>3</jats:sub> calcination step. However, the nature of the process changes significantly, which requires a fundamental understanding of the new mechanisms controlling the process of CO<jats:sub>2</jats:sub> absorption and CaCO<jats:sub>3</jats:sub> precipitation. Within this work, a CO<jats:sub>2</jats:sub> rich gas is contacted with a calcium rich aqueous feed in a continuous reactive crystallizor. The CO<jats:sub>2</jats:sub> selectively absorbs and precipitates as either vaterite or calcite. The effect of the liquid and gas feed flow rates, of the feed stoichiometric ratio and of the residence time on key performance indicators, such as the CO<jats:sub>2</jats:sub> capture efficiency the CaCO<jats:sub>3</jats:sub> precipitation efficiency and the features of the final product, is studied experimentally. As expected, these feed characteristics determine the effective stoichiometric ratio of reactants in the liquid phase, <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m1"><mml:mrow><mml:mi>ψ</mml:mi><mml:mo>.</mml:mo><mml:mo> </mml:mo></mml:mrow></mml:math></jats:inline-formula> The particle size increases strongly with <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m2"><mml:mi>ψ</mml:mi></mml:math></jats:inline-formula>; vaterite represents the predominant solid phase at <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m3"><mml:mi>ψ</mml:mi></mml:math></jats:inline-formula> &amp;lt; 1 while otherwise a mix of vaterite and calcite was formed, whereas the latter one accounted for 13%–90% in mass of crystals collected. Moreover, <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="m4"><mml:mi>ψ</mml:mi></mml:math></jats:inline-formula> of about one exhibits the highest CO<jats:sub>2</jats:sub> capture efficiency exceeding 80%.</jats:p>
  • Access State: Open Access