Description:
Ponds in agricultural areas are ubiquitous water retention systems acting as reactive biogeochemical hotspots controlling pesticide dissipation and transfer at the catchment scale. Several issues need to be addressed in order to understand, follow-up and predict the role of ponds in limiting pesticide transfer at the catchment scale. In this review, we present a critical overview of functional processes underpinning pesticide dissipation in ponds. We highlight the need to distinguish degradative and non-degradative processes and to understand the role of the sediment-water interface in pesticide dissipation. Yet it is not well-established how pesticide dissipation in ponds governs the pesticide transfer at the catchment scale under varying hydro-climatic conditions and agricultural operation practices. To illustrate the multi-scale and dynamic aspects of this issue, we sketch a modelling framework integrating the role of ponds at the catchment scale. Such an integrated framework can improve the spatial prediction of pesticide transfer and risk assessment across the catchment-ponds-river continuum to facilitate management rules and operations.