• Media type: E-Article
  • Title: Damage Evolution and Failure Mechanism of Red-Bed Rock under Drying–Wetting Cycles
  • Contributor: Wen, Tao; Wang, Yankun; Tang, Huiming; Zhang, Junrong; Hu, Mingyi
  • imprint: MDPI AG, 2023
  • Published in: Water
  • Language: English
  • DOI: 10.3390/w15152684
  • ISSN: 2073-4441
  • Keywords: Water Science and Technology ; Aquatic Science ; Geography, Planning and Development ; Biochemistry
  • Origination:
  • Footnote:
  • Description: <jats:p>The rock mass on the bank slope of the Three Gorges Reservoir (TGR) area often suffers from a drying–wetting cycle (DWC). How the DWCs significantly affect the mechanical properties and the stability of the rock mass is worth comprehensively investigating. In this study, the influence of the DWC on the mechanical properties of red-bed rock, mainly purplish red argillaceous siltstone, is explored in detail. Triaxial compression tests were conducted on siltstones that were initially subjected to different DWCs. The results show that DWCs lead to a decrease in mechanical properties such as peak stress, residual stress, and elastic modulus, while an increase in confining pressure (CP) levels leads to an increase in these mechanical properties. Significant correlations are found between the energy parameters and the DWC or the CP. Notably, the total absorption energy (TAE) demonstrates a positive correlation with the CP, but the capability of siltstones to absorb energy shows a negative correlation with DWC. Moreover, the study also examines the damage evolution laws of rocks under different DWCs by proposing a damage variable (DV). Results demonstrate that the effect of the CP on the DV is more pronounced than that of DWCs. A novel brittleness index (BI) was also proposed for estimating rock brittleness through damage strain rate analysis. The effectiveness of the proposed BI is validated by evaluating the effects of DWCs and CP on rock brittleness. Finally, the failure mechanism of the rocks under water–rock interaction is revealed. The weakening of mechanical properties occurs due to the formation of microcracks in response to DWCs. These findings provide valuable guidance for the long-term stability assessment of bank slope engineering projects under DWCs.</jats:p>
  • Access State: Open Access