• Media type: E-Article
  • Title: Management Effect on the Weed Control Efficiency in Double Cropping Systems
  • Contributor: Schmidt, Fruzsina; Böhm, Herwart; Graß, Rüdiger; Wachendorf, Michael; Piepho, Hans-Peter
  • imprint: MDPI AG, 2023
  • Published in: Agronomy
  • Language: English
  • DOI: 10.3390/agronomy13020467
  • ISSN: 2073-4395
  • Keywords: Agronomy and Crop Science
  • Origination:
  • Footnote:
  • Description: <jats:p>There are often negative side-effects associated with the traditional (silage) maize cropping system related to the unprotected soil surface. Reducing soil disturbance could enhance system sustainability. Yet, increased weed pressure and decreased nitrogen availability, particularly in organic agriculture, may limit the implementation of alternative management methods. Therefore, a field experiment was conducted at two distinct locations to evaluate the weed control efficiency of 18 organically managed silage maize cropping systems. Examined parameters were relative weed groundcover (GCweed) and its correlation with maize dry matter yield (DMY), relative proportion of dominant weed species (DWS) and their groups by life form (DWSgroup). Treatment factors comprised first crop (FC—winter pea, hairy vetch, and their mixtures with rye, control (sole silage maize cropping system—SCS)), management—incorporating FC use and tillage (double cropping system no-till (DCS NT), double cropping system reduced till (DCS RT), double cropped, mulched system (DCMS Roll) and SCS control), fertilization, mechanical weed control and row width (75 cm and 50 cm). The variation among environments was high, but similar patterns occurred across locations: Generally low GCweed occurred (below 28%) and, therefore, typically no correlation to maize DMY was observed. The number of crops (system), system:management and occasionally management:FC (group) influenced GCweed and DWS(group). Row width had inconsistent and/or marginal effects. Results suggest differences related to the successful inclusion of DCS and DCMS into the rotation, and to the altered soil conditions, additional physical destruction by shallow tillage operations, especially in the early season, which possibly acts through soil thermal and chemical properties, as well as light conditions. DCS RT could successfully reduce GCweed below 5%, whereas DCS NT and particularly DCMS (Mix) suffered from inadequate FC management. Improvements in DCMS may comprise the use of earlier maturing legumes, especially hairy vetch varieties, further reduction/omission of the cereal companion in the mixture and/or more destructive termination of the FC.</jats:p>
  • Access State: Open Access