• Media type: E-Article
  • Title: Modeling of Heat Phenomenon in Rolling Kinematic Pairs Using the Finite Element Method
  • Contributor: Kosmol, Jan
  • imprint: MDPI AG, 2021
  • Published in: Applied Sciences
  • Language: English
  • DOI: 10.3390/app11146447
  • ISSN: 2076-3417
  • Keywords: Fluid Flow and Transfer Processes ; Computer Science Applications ; Process Chemistry and Technology ; General Engineering ; Instrumentation ; General Materials Science
  • Origination:
  • Footnote:
  • Description: <jats:p>In the spindles of HSC (High Speed Cutting) machines with rolling bearings, higher temperatures in the bearings can be expected, which may affect the resistance to movement of the bearing itself. Therefore, to estimate these resistances, it is necessary to know the temperatures of the bearing components. The article presents the results of FEM simulation tests of temperature distribution in a rolling bearing. These studies were focused on assessing the influence of such features as the distribution of heat sources, the geometric form and size of the contact areas of the balls with the raceways, the conditions of heat convection to the environment and heat conduction inside the bearing. It has been recognized that FEM simulations for the default conditions offered by most commercial FEM systems can lead to out-of-the-box results. As part of the experimental research, conclusions from the simulation studies were verified.</jats:p>
  • Access State: Open Access