• Media type: E-Article
  • Title: Application of Starch Based Coatings as a Sustainable Solution to Preserve and Decipher the Charred Documents
  • Contributor: Kesarwani, Sonali; Tripathy, Divya Bajpai; Kumar, Suneet
  • imprint: MDPI AG, 2023
  • Published in: Coatings
  • Language: English
  • DOI: 10.3390/coatings13091521
  • ISSN: 2079-6412
  • Keywords: Materials Chemistry ; Surfaces, Coatings and Films ; Surfaces and Interfaces
  • Origination:
  • Footnote:
  • Description: <jats:p>Fire can be one of the most destructive elements to cause devastation. Fire can completely or partly destroy any crucial and invaluable documents, such as banknotes, books, affidavits, etc., in a couple of minutes. Moreover, the documents can also be damaged by heat, smoke, soot, and water during an accident. The burnt documents become fragile, losing their identity, which may have some evidentiary value related to the incident. Therefore, there is a strong need for processing to procure, preserve, and decipher, i.e., to restore the texts written on them. Hence, the present research focuses on developing a new method using natural polysaccharides, i.e., starch, to preserve and decipher the contents of charred documents. The most suitable concentration of starch analog was found to be 6% microwaved at 80 °C for about 10 min. As soon as the charred documents were coated with 6% starch analog, the majority of the invisible texts became visible to the naked eye in a second. Moreover, the application of a synthesized analog of polysaccharide on fragile charred documents provided an appreciable increase in strength by almost 0.1 kg/cm2 for the coated charred documents of each paper type compared to that of non-coated ones and made them stabilized. This research also involves the use of easy and advanced handwriting recognition techniques (HCR) using an easily accessible, free platform, G-lens, that successfully recognized the majority of texts deciphered using 6% starch analog and converted them from captured images to a readable and copyable text format. Furthermore, the document visualization under VSC also gave a promising result by enhancing and deciphering the non-visible and less visible texts under flood light and white spot light at 715 and 695 long passes. Hence, this study offers an environmentally friendly, cost-effective, and sustainable approach of using a natural polysaccharide instead of synthetic polymers for the preservation and decipherment of charred documents.</jats:p>
  • Access State: Open Access