• Media type: E-Article
  • Title: Genetic Findings as the Potential Basis of Personalized Pharmacotherapy in Phelan-McDermid Syndrome
  • Contributor: Dyar, Brianna; Meaddough, Erika; Sarasua, Sara M.; Rogers, Curtis; Phelan, Katy; Boccuto, Luigi
  • Published: MDPI AG, 2021
  • Published in: Genes, 12 (2021) 8, Seite 1192
  • Language: English
  • DOI: 10.3390/genes12081192
  • ISSN: 2073-4425
  • Origination:
  • Footnote:
  • Description: Phelan-McDermid syndrome (PMS) is a genetic disorder often characterized by autism or autistic-like behavior. Most cases are associated with haploinsufficiency of the SHANK3 gene resulting from deletion of the gene at 22q13.3 or from a pathogenic variant in the gene. Treatment of PMS often targets SHANK3, yet deletion size varies from <50 kb to >9 Mb, potentially encompassing dozens of genes and disrupting regulatory elements altering gene expression, inferring the potential for multiple therapeutic targets. Repurposed drugs have been used in clinical trials investigating therapies for PMS: insulin-like growth factor 1 (IGF-1) for its effect on social and aberrant behaviors, intranasal insulin for improvements in cognitive and social ability, and lithium for reversing regression and stabilizing behavior. The pharmacogenomics of PMS is complicated by the CYP2D6 enzyme which metabolizes antidepressants and antipsychotics often used for treatment. The gene coding for CYP2D6 maps to 22q13.2 and is lost in individuals with deletions larger than 8 Mb. Because PMS has diverse neurological and medical symptoms, many concurrent medications may be prescribed, increasing the risk for adverse drug reactions. At present, there is no single best treatment for PMS. Approaches to therapy are necessarily complex and must target variable behavioral and physical symptoms of PMS.
  • Access State: Open Access