• Media type: E-Article
  • Title: Analysis of the Structure and Biosynthesis of the Lipopolysaccharide Core Oligosaccharide of Pseudomonas syringae pv. tomato DC3000
  • Contributor: Kutschera, Alexander; Schombel, Ursula; Schwudke, Dominik; Ranf, Stefanie; Gisch, Nicolas
  • imprint: MDPI AG, 2021
  • Published in: International Journal of Molecular Sciences
  • Language: English
  • DOI: 10.3390/ijms22063250
  • ISSN: 1422-0067
  • Keywords: Inorganic Chemistry ; Organic Chemistry ; Physical and Theoretical Chemistry ; Computer Science Applications ; Spectroscopy ; Molecular Biology ; General Medicine ; Catalysis
  • Origination:
  • Footnote:
  • Description: <jats:p>Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is important for bacterial viability in general and host–pathogen interactions in particular. Negative charges at its core oligosaccharide (core-OS) contribute to membrane integrity through bridging interactions with divalent cations. The molecular structure and synthesis of the core-OS have been resolved in various bacteria including the mammalian pathogen Pseudomonas aeruginosa. A few core-OS structures of plant-associated Pseudomonas strains have been solved to date, but the genetic components of the underlying biosynthesis remained unclear. We conducted a comparative genome analysis of the core-OS gene cluster in Pseudomonas syringae pv. tomato (Pst) DC3000, a widely used model pathogen in plant–microbe interactions, within the P. syringae species complex and to other plant-associated Pseudomonas strains. Our results suggest a genetic and structural conservation of the inner core-OS but variation in outer core-OS composition within the P. syringae species complex. Structural analysis of the core-OS of Pst DC3000 shows an uncommonly high phosphorylation and presence of an O-acetylated sugar. Finally, we combined the results of our genomic survey with available structure information to estimate the core-OS composition of other Pseudomonas species.</jats:p>
  • Access State: Open Access