• Media type: E-Article
  • Title: Role of pH on Nanostructured SERS Active Substrates for Detection of Organic Dyes
  • Contributor: Mollica Nardo, Viviana; Renda, Vincenzo; Trusso, Sebastiano; Ponterio, Rosina Celeste
  • imprint: MDPI AG, 2021
  • Published in: Molecules
  • Language: English
  • DOI: 10.3390/molecules26082360
  • ISSN: 1420-3049
  • Keywords: Chemistry (miscellaneous) ; Analytical Chemistry ; Organic Chemistry ; Physical and Theoretical Chemistry ; Molecular Medicine ; Drug Discovery ; Pharmaceutical Science
  • Origination:
  • Footnote:
  • Description: <jats:p>Surface Enhanced Raman Spectroscopy is commonly used as analytical improvement to conventional Raman spectroscopy, able to respond to qualitative diagnostic enquiries, which involve low-concentrated molecular species in complex matrix. In this paper, we described fabrication, characterization and testing of a type of SERS-active substrates realized specifically to detect pigments in work of art. In particular, we detailed the SERS activity of nanostructured noble metal films deposited by pulsed laser ablation onto glass and polishing sheets substrates. The SERS response of the substrates was tested against the presence of some organic dyes in aqueous solutions. Measurements were performed at different pH values, in acidic or basic range, in order to investigate its role in the adsorption mechanism, thus fostering the SERS amplification. In addition, we checked the possible deterioration of the structural properties of the substrates that could occur in presence of alkaline or acidic environment. SERS activity of the substrates was tested against a commonly dye used as a SERS standard (Blue Methylene). Thereafter, substrates have been tested on two organic dyes (Alizarine red-S and Brazilwood), which had proven to be Raman active but present also either a weak Raman scattering cross section and/or a high fluorescence emission. The substrates have proven effective in amplifying Raman scattering of all dyes, quenching troubling fluorescence effects. Furthermore, they have proven to be stable in the pH range between 3 and 11. Furthermore, we carry out of vibrational DFT-calculation of dyes that provide a complete description of the observed SERS spectra.</jats:p>
  • Access State: Open Access