• Media type: E-Article
  • Title: Differential Response of Pentanal and Hexanal Exhalation to Supplemental Oxygen and Mechanical Ventilation in Rats
  • Contributor: Müller-Wirtz, Lukas M.; Kiefer, Daniel; Knauf, Joschua; Floss, Maximilian A.; Doneit, Jonas; Wolf, Beate; Maurer, Felix; Sessler, Daniel I.; Volk, Thomas; Kreuer, Sascha; Fink, Tobias
  • imprint: MDPI AG, 2021
  • Published in: Molecules
  • Language: English
  • DOI: 10.3390/molecules26092752
  • ISSN: 1420-3049
  • Keywords: Chemistry (miscellaneous) ; Analytical Chemistry ; Organic Chemistry ; Physical and Theoretical Chemistry ; Molecular Medicine ; Drug Discovery ; Pharmaceutical Science
  • Origination:
  • Footnote:
  • Description: <jats:p>High inspired oxygen during mechanical ventilation may influence the exhalation of the previously proposed breath biomarkers pentanal and hexanal, and additionally induce systemic inflammation. We therefore investigated the effect of various concentrations of inspired oxygen on pentanal and hexanal exhalation and serum interleukin concentrations in 30 Sprague Dawley rats mechanically ventilated with 30, 60, or 93% inspired oxygen for 12 h. Pentanal exhalation did not differ as a function of inspired oxygen but increased by an average of 0.4 (95%CI: 0.3; 0.5) ppb per hour, with concentrations doubling from 3.8 (IQR: 2.8; 5.1) ppb at baseline to 7.3 (IQR: 5.0; 10.8) ppb after 12 h. Hexanal exhalation was slightly higher at 93% of inspired oxygen with an average difference of 0.09 (95%CI: 0.002; 0.172) ppb compared to 30%. Serum IL-6 did not differ by inspired oxygen, whereas IL-10 at 60% and 93% of inspired oxygen was greater than with 30%. Both interleukins increased over 12 h of mechanical ventilation at all oxygen concentrations. Mechanical ventilation at high inspired oxygen promotes pulmonary lipid peroxidation and systemic inflammation. However, the response of pentanal and hexanal exhalation varies, with pentanal increasing by mechanical ventilation, whereas hexanal increases by high inspired oxygen concentrations.</jats:p>
  • Access State: Open Access