• Media type: E-Article
  • Title: Thermo-Economic Analysis of Near-Surface Geothermal Energy Considering Heat and Cold Supply within a Low-Temperature District Heating Network
  • Contributor: Kutzner, Sebastian; Heberle, Florian; Brüggemann, Dieter
  • imprint: MDPI AG, 2022
  • Published in: Processes
  • Language: English
  • DOI: 10.3390/pr10020421
  • ISSN: 2227-9717
  • Keywords: Process Chemistry and Technology ; Chemical Engineering (miscellaneous) ; Bioengineering
  • Origination:
  • Footnote:
  • Description: <jats:p>This study evaluates low-temperature district heating (LTDH) networks with different geothermal heat sources under thermo-economic criteria. In particular, the heat and cold supply of modern neighbourhoods are taken into account in a dynamic simulation model built on the modelling language Modelica. Both horizontal and vertical ground heat exchangers (GHE) were investigated in respect to the load profiles of the consumers, depending on dimension as well as location. The selected base case represents a LTDH network near Stuttgart (Germany). The corresponding results of an annual simulation show that a horizontal GHE is suitable for pure heat supply and can reduce costs by up to 12% compared to a vertical system. This economic advantage remains when the cooling demand is considered. Subsequently, a variation of the system location was carried out. It is shown that horizontal GHEs operate more economically in northern regions, whereas vertical ones are more advantageous in regions with increased cooling demand. For both cases, possible savings of between 3.0% and 4.2% resulted from the simulations. The heating-to-cooling demand ratio was used as a first decision criteria to weigh-up between the two systems. Vertical GHEs were more economical than horizontal systems as soon as the ratio dropped below 1.5.</jats:p>
  • Access State: Open Access