• Media type: E-Article
  • Title: Machine Learning to Estimate the Mass-Diffusion Distance from a Point Source under Turbulent Conditions
  • Contributor: Ishigami, Takahiro; Irikura, Motoki; Tsukahara, Takahiro
  • imprint: MDPI AG, 2022
  • Published in: Processes
  • Language: English
  • DOI: 10.3390/pr10050860
  • ISSN: 2227-9717
  • Keywords: Process Chemistry and Technology ; Chemical Engineering (miscellaneous) ; Bioengineering
  • Origination:
  • Footnote:
  • Description: <jats:p>Technologies that predict the sources of substances diffused in the atmosphere, ocean, and chemical plants are being researched in various fields. The flows transporting such substances are typically in turbulent states, and several problems including the nonlinearity of turbulence must be overcome to enable accurate estimations of diffusion-source location from limited observation data. We studied the feasibility of machine learning, specifically convolutional neural networks (CNNs), to the problem of estimating the diffusion distance from a point source, based on two-dimensional, instantaneous information of diffused-substance distributions downstream of the source. The input image data for the learner are the concentration (or luminance of fluorescent dye) distributions affected by turbulent motions of the transport medium. In order to verify our approach, we employed experimental data of a fully developed turbulent channel flow with a dye nozzle, wherein we attempted to estimate the distances between the dye nozzle and downstream observation windows. The inference accuracy of four different CNN architectures were investigated, and some achieved an accuracy of more than 90%. We confirmed the independence of the inference accuracy on the anisotropy (or rotation) of the image. The trained CNN can recognize the turbulent characteristics for estimating the diffusion source distance without statistical processing. The learners have a strong dependency on the condition of learning images, such as window size and image noise, implying that learning images should be carefully handled for obtaining higher generalization performance.</jats:p>
  • Access State: Open Access