• Media type: E-Article
  • Title: Deep Learning for Transient Image Reconstruction from ToF Data
  • Contributor: Buratto, Enrico; Simonetto, Adriano; Agresti, Gianluca; Schäfer, Henrik; Zanuttigh, Pietro
  • Published: MDPI AG, 2021
  • Published in: Sensors, 21 (2021) 6, Seite 1962
  • Language: English
  • DOI: 10.3390/s21061962
  • ISSN: 1424-8220
  • Origination:
  • Footnote:
  • Description: In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.
  • Access State: Open Access