• Media type: E-Article
  • Title: A Wideband and Low-Power Distributed Cascode Mixer Using Inductive Feedback
  • Contributor: Kim, Jihoon
  • imprint: MDPI AG, 2022
  • Published in: Sensors
  • Language: English
  • DOI: 10.3390/s22229022
  • ISSN: 1424-8220
  • Keywords: Electrical and Electronic Engineering ; Biochemistry ; Instrumentation ; Atomic and Molecular Physics, and Optics ; Analytical Chemistry
  • Origination:
  • Footnote:
  • Description: <jats:p>A wideband and low-power distributed cascode mixer is implemented for future mobile communications. The distributed design inspired by the distributed amplifier (DA) enables a mixer to operate in a wide band. In addition, the cascode structure and inductive positive feedback design allow high conversion gain with low-power consumption. The proposed mixer is fabricated using a 130 nm commercial complementary metal-oxide-semiconductor (CMOS) process. It consists of three cascode gain cells and operates with a drain voltage of 1.5 V and a gate voltage of 0.5 to 0.7 V. The fabricated mixer exhibits conversion gain of −2.9 to 3.1 dB at the radio frequencies (RFs) of 4 to 30 GHz and −1.9 to 0.4 dB at RFs of 54 to 66 GHz under the conditions of 8 to 10 dBm of local oscillator (LO) power and 650 MHz of intermediate frequency (IF). The LO-RF isolation is more than 15 dB over the entire measurement band (0.2 to 67 GHz) as the RF and LO signals are applied to different transistors owing to the cascode structure. The total power consumption is only within 12 mW, and the chip size is 0.056 mm2, making it possible to implement a compact mixer. The proposed mixer shows broadband characteristics covering from ultra-wideband (UWB) and the 28 GHz fifth-generation (5G) communication band to the 60 GHz wireless gigabit alliance (WiGig) band.</jats:p>
  • Access State: Open Access