• Media type: E-Article
  • Title: Train Distance Estimation in Turnout Area Based on Monocular Vision
  • Contributor: Hao, Yang; Tang, Tao; Gao, Chunhai
  • Published: MDPI AG, 2023
  • Published in: Sensors, 23 (2023) 21, Seite 8778
  • Language: English
  • DOI: 10.3390/s23218778
  • ISSN: 1424-8220
  • Keywords: Electrical and Electronic Engineering ; Biochemistry ; Instrumentation ; Atomic and Molecular Physics, and Optics ; Analytical Chemistry
  • Origination:
  • Footnote:
  • Description: Train distance estimation in a turnout area is an important task for the autonomous driving of urban railway transit, since this function can assist trains in sensing the positions of other trains within the turnout area and prevent potential collision accidents. However, because of large incident angles on object surfaces and far distances, Lidar or stereo vision cannot provide satisfactory precision for such scenarios. In this paper, we propose a method for train distance estimation in a turnout area based on monocular vision: firstly, the side windows of trains in turnout areas are detected by instance segmentation based on YOLOv8; secondly, the vertical directions, the upper edges and lower edges of side windows of the train are extracted by feature extraction; finally, the distance to the target train is calculated with an appropriated pinhole camera model. The proposed method is validated by practical data captured from Hong Kong Metro Tsuen Wan Line. A dataset of 2477 images is built to train the instance segmentation neural network, and the network is able to attain an MIoU of 92.43% and a MPA of 97.47% for segmentation. The accuracy of train distance estimation is then evaluated in four typical turnout area scenarios with ground truth data from on-board Lidar. The experiment results indicate that the proposed method achieves a mean RMSE of 0.9523 m for train distance estimation in four typical turnout area scenarios, which is sufficient for determining the occupancy of crossover in turnout areas.
  • Access State: Open Access