• Media type: E-Article
  • Title: X-Ray Evidence Against the Hypothesis that the Hyperluminous z = 6.3 Quasar J0100+2802 is Lensed
  • Contributor: Connor, Thomas; Stern, Daniel; Bañados, Eduardo; Mazzucchelli, Chiara
  • Published: American Astronomical Society, 2021
  • Published in: The Astrophysical Journal Letters, 922 (2021) 2, Seite L24
  • Language: Without Specification
  • DOI: 10.3847/2041-8213/ac37b5
  • ISSN: 2041-8205; 2041-8213
  • Origination:
  • Footnote:
  • Description: Abstract The z = 6.327 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802) is believed to be powered by a black hole more massive than 1010 M ⊙, making it the most massive black hole known in the first billion years of the universe. However, recent high-resolution ALMA imaging shows four structures at the location of this quasar, potentially implying that it is lensed with a magnification of μ ∼ 450 and thus its black hole is significantly less massive. Furthermore, for the underlying distribution of magnifications of z ≳ 6 quasars to produce such an extreme value, theoretical models predict that a larger number of quasars in this epoch should be lensed, implying further overestimates of early black hole masses. To provide an independent constraint on the possibility that J0100+2802 is lensed, we reanalyzed archival XMM-Newton observations of the quasar and compared the expected ratios of X-ray luminosity to rest-frame UV and IR luminosities. For both cases, J0100+2802's X-ray flux is consistent with the no-lensing scenario; while this could be explained by J0100+2802 being X-ray faint, we find it does not have the X-ray or optical spectral features expected for an X-ray faint quasar. Finally, we compare the overall distribution of X-ray fluxes for known, typical z ≳ 6 quasars. We find a 3σ tension between the observed and predicted X-ray-to-UV flux ratios when adopting the magnification probability distribution required to produce a μ = 450 quasar.
  • Access State: Open Access