The Epitopes Targeted by the Rheumatoid Arthritis-Associated Antifilaggrin Autoantibodies are Posttranslationally Generated on Various Sites of (Pro)Filaggrin by Deimination of Arginine Residues
You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Article
Title:
The Epitopes Targeted by the Rheumatoid Arthritis-Associated Antifilaggrin Autoantibodies are Posttranslationally Generated on Various Sites of (Pro)Filaggrin by Deimination of Arginine Residues
Published:
The American Association of Immunologists, 1999
Published in:
The Journal of Immunology, 162 (1999) 1, Seite 585-594
Language:
English
DOI:
10.4049/jimmunol.162.1.585
ISSN:
0022-1767;
1550-6606
Origination:
Footnote:
Description:
Abstract Antifilaggrin autoantibodies (AFA) are a population of IgG autoantibodies associated to rheumatoid arthritis (RA), which includes the so-called “antikeratin” Abs and antiperinuclear factor. AFA are the most specific serological markers of RA. We previously showed that they recognize human epidermal filaggrin and other profilaggrin-related proteins of various epithelial tissues. Here, we report further characterization of the protein Ags and epitopes targeted by AFA. All the Ags that exhibit numerous neutral/acidic isoelectric variants were immunochemically demonstrated to be deiminated proteins. In vitro deimination of a recombinant human filaggrin by a peptidylarginine deiminase generated AFA epitopes on the protein. Moreover, two of three filaggrin-derived synthetic peptides with a citrulline in the central position were specifically and widely recognized by AFA affinity-purified from a series of RA sera. These results indicate that citrulline residues are constitutive of the AFA epitopes, but only in the context of specific amino acid sequences of filaggrin. In competition experiments, the two peptides abolished the AFA reactivity of RA sera, showing that they present major AFA epitopes. These data should help in the identification of a putative deiminated AFA-inducing or cross-reactive articular autoantigen and provide new insights into the pathogenesis of RA. They could also open the way toward specific immunosuppressive and/or preventive therapy of RA.