• Media type: E-Article
  • Title: More Stringent Conditions of Plasmid DNA Vaccination Are Required to Protect Grafted Versus Endogenous Islets in Nonobese Diabetic Mice
  • Contributor: Seifarth, Christian; Pop, Shannon; Liu, Bo; Wong, Carmen P.; Tisch, Roland
  • imprint: The American Association of Immunologists, 2003
  • Published in: The Journal of Immunology
  • Language: English
  • DOI: 10.4049/jimmunol.171.1.469
  • ISSN: 0022-1767; 1550-6606
  • Keywords: Immunology ; Immunology and Allergy
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title> <jats:p>Recurrent autoimmune destruction of the insulin-producing β cells is a key factor limiting successful islet graft transplantation in type I diabetic patients. In this study, we investigated the feasibility of using an Ag-specific plasmid DNA (pDNA)-based strategy to protect pro-islets that had developed from a neonatal pancreas implanted under the kidney capsule of nonobese diabetic (NOD) mice. NOD recipient mice immunized with pDNA encoding a glutamic acid decarboxylase 65 (GAD65)-IgFc fusion protein (JwGAD65), IL-4 (JwIL4), and IL-10 (pIL10) exhibited an increased number of intact pro-islets expressing high levels of insulin 15 wk posttransplant, relative to NOD recipient mice immunized with pDNA encoding a hen egg lysozyme (HEL)-IgFc fusion protein (JwHEL)+JwIL4 and pIL10 or left untreated. Notably, the majority of grafted pro-islets detected in JwGAD65+JwIL4- plus pIL10-treated recipients was free of insulitis. In addition, administration of JwGAD65+JwIL4+pIL10 provided optimal protection for engrafted islets compared with recipient NOD mice treated with JwGAD65+JwIL4 or JwGAD65+pIL10, despite effective protection of endogenous islets mediated by the respective pDNA treatments. Efficient protection of pro-islet grafts correlated with a marked reduction in GAD65-specific IFN-γ reactivity and an increase in IL-10-secreting T cells. These results demonstrate that pDNA vaccination can be an effective strategy to mediate long-term protection of pro-islet grafts in an Ag-specific manner and that conditions are more stringent to suppress autoimmune destruction of grafted vs endogenous islets.</jats:p>
  • Access State: Open Access