You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Article
Title:
Robot Learning from Demonstration: A Task-level Planning Approach
Contributor:
Ekvall, Staffan;
Kragic, Danica
Published:
SAGE Publications, 2008
Published in:
International Journal of Advanced Robotic Systems, 5 (2008) 3, Seite 33
Language:
English
DOI:
10.5772/5611
ISSN:
1729-8814
Origination:
Footnote:
Description:
In this paper, we deal with the problem of learning by demonstration, task level learning and planning for robotic applications that involve object manipulation. Preprogramming robots for execution of complex domestic tasks such as setting a dinner table is of little use, since the same order of subtasks may not be conceivable in the run time due to the changed state of the world. In our approach, we aim to learn the goal of the task and use a task planner to reach the goal given different initial states of the world. For some tasks, there are underlying constraints that must be fulfille, and knowing just the final goal is not sufficient. We propose two techniques for constraint identification. In the first case, the teacher can directly instruct the system about the underlying constraints. In the second case, the constraints are identified by the robot itself based on multiple observations. The constraints are then considered in the planning phase, allowing the task to be executed without violating any of them. We evaluate our work on a real robot performing pick-and-place tasks.