• Media type: E-Article
  • Title: Cardiac Myosin Activation: A Potential Therapeutic Approach for Systolic Heart Failure
  • Contributor: Malik, Fady I.; Hartman, James J.; Elias, Kathleen A.; Morgan, Bradley P.; Rodriguez, Hector; Brejc, Katjuša; Anderson, Robert L.; Sueoka, Sandra H.; Lee, Kenneth H.; Finer, Jeffrey T.; Sakowicz, Roman; Baliga, Ramesh; Cox, David R.; Garard, Marc; Godinez, Guillermo; Kawas, Raja; Kraynack, Erica; Lenzi, David; Lu, Pu Ping; Muci, Alexander; Niu, Congrong; Qian, Xiangping; Pierce, Daniel W.; Pokrovskii, Maria; [...]
  • Published: American Association for the Advancement of Science, 2011
  • Published in: Science, 331 (2011) 6023, Seite 1439-1443
  • Language: English
  • DOI: 10.1126/science.1200113
  • ISSN: 0036-8075; 1095-9203
  • Keywords: REPORTS
  • Origination:
  • Footnote:
  • Description: Decreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin. Here, we show that it binds to the myosin catalytic domain and operates by an allosteric mechanism to increase the transition rate of myosin into the strongly actin-bound force-generating state. Paradoxically, it inhibits adenosine 5′-triphosphate turnover in the absence of actin, which suggests that it stabilizes an actin-bound conformation of myosin. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure.