You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Article
Title:
ORACLE INEQUALITIES FOR NETWORK MODELS AND SPARSE GRAPHON ESTIMATION
Contributor:
Klopp, Olga;
Tsybakov, Alexandre B.;
Verzelen, Nicolas
Published:
Institute of Mathematical Statistics, 2017
Published in:
The Annals of Statistics, 45 (2017) 1, Seite 316-354
Language:
English
ISSN:
0090-5364
Origination:
Footnote:
Description:
Inhomogeneous random graph models encompass many network models such as stochastic block models and latent position models. We consider the problem of statistical estimation of the matrix of connection probabilities based on the observations of the adjacency matrix of the network. Taking the stochastic block model as an approximation, we construct estimators of network connection probabilities—the ordinary block constant least squares estimator, and its restricted version. We show that they satisfy oracle inequalities with respect to the block constant oracle. As a consequence, we derive optimal rates of estimation of the probability matrix. Our results cover the important setting of sparse networks. Another consequence consists in establishing upper bounds on the minimax risks for graphon estimation in the L₂ norm when the probability matrix is sampled according to a graphon model. These bounds include an additional term accounting for the "agnostic" error induced by the variability of the latent unobserved variables of the graphon model. In this setting, the optimal rates are influenced not only by the bias and variance components as in usual nonparametric problems but also include the third component, which is the agnostic error. The results shed light on the differences between estimation under the empirical loss (the probability matrix estimation) and under the integrated loss (the graphon estimation).