• Medientyp: E-Book; Hochschulschrift
  • Titel: Development of PVD-coated and nanostructured reactive multilayer films
  • Beteiligte: Sen, Seema [VerfasserIn]; Schaaf, Peter [AkademischeR BetreuerIn]; Bergmann, Jean Pierre [GutachterIn]; Lake, Markus [GutachterIn]
  • Körperschaft: Technische Universität Ilmenau ; Universitätsverlag Ilmenau
  • Erschienen: Ilmenau: Universitätsverlag Ilmenau, 2018
    Ilmenau: Universitätsbibliothek, 2018
  • Erschienen in: Werkstofftechnik aktuell ; 19
  • Umfang: 1 Online-Ressource (XVII, 166 Seiten); Diagramme, Illustrationen (teilweise farbig)
  • Sprache: Englisch
  • Identifikator:
  • Schlagwörter: PVD-Verfahren > Magnetronsputtern > Mehrschichtsystem > Nanostrukturiertes Material
  • Entstehung:
  • Hochschulschrift: Dissertation, Technische Universität Ilmenau, 2018
  • Anmerkungen: Systemvoraussetzung: Acrobat reader
  • Beschreibung: Als eine neue Klasse von energetischen Materialien speichern die reaktiven Multilagensysteme die chemische Energie. Sie setzen eine große Menge der Energie durch eine schnelle Reaktionspropagation nach einer Aktivierung in der Form von Wärme frei. Im Zusammenhang mit dem zunehmenden Potenzial in den hochmodernen Fügetechnologien und den anderen Industrieanwendungen finden solche Typen von reaktiven Mehrschichtensystemen große Aufmerksamkeit. Das hohe Interesse konzentriert sich auf die Anwendung der sehr schnellen und lokalisierten Energie Freisetzung. Die Kenntnisse über die Materialkombinationen und Morphologie spielt eine wichtige Rolle, um reaktive Mehrschichtensysteme mit entsprechenden Reaktionseigenschaften und Wärmemenge herzustellen. Im Mittelpunkt dieser Arbeit stehen daher die Entwicklung der Schichtweise abgeschiedenen reaktiven Multilagenschichten und die Charakterisierung der Reaktionseigenschaften. Die eingestellten Bereiche können wie folgt zusammengefasst werden; - Die reaktiven Multilagenschichten von binären Ti-Al, Zr-Al und ternären Ti-Al-Si Kombinationen wurden mittels Magnetronsputtern-Deposition produziert, die zu der niedrigen Medium oder hohen Energieklasse gehören. - Die selbstverbreitenden Reaktionseigenschaften wurden in Bezug auf Wärme, Temperatur, Reaktionsgeschwindigkeit und Propagationsweisen charakterisiert. - Herstellung der großflächigen freistehenden reaktiven Folien wurde aufgezeigt. Für die Bestimmung der Reaktionswärme wurde die Standardbildungsenthalpie zu Beginn der Arbeit durch thermodynamische Simulationen mit Thermo-Calc 3.1 berechnet. Die Menge der Reaktionswärme hängt von der chemischen Zusammensetzung des Ti-Al-, Zr-Al- und Ti-Si Systems ab. Dann wurden Ti/Al, Zr/Al und Ti/Si/Ti/nAl Multilagenschichten für unterschiedliche Periodendicken, Molverhältnisse und Multischichtaufbau abgeschieden. Die Ti/nAl (n = 1-3) reaktiven Multilagenschichten wurden mit verschiedenen Al-Molverhältnissen hergestellt. Die Reaktionsgeschwindigkeit änderte sich zwischen (0.68±0.4) m/s und (2.57±0.6) m/s. Die Reaktionstemperatur änderte sich im Bereich 1215-1298 °C. Die 1Ti/3Al Schicht zeigt auch eine instationäre Reaktionspropagation mit der Kräuselungsbandbildung. Außerdem wurden der Temperaturfluss und die chemische Vermischung in nanoskalige Schichten von 1Ti/1Al Zusammensetzung (für 20 nm Periodendicke) erstmals mittels Strömung Simulation berechnet. Die Ergebnisse zeigten, dass der Temperaturfluss viel schneller als das chemische Mischen während der fortschreitenden Reaktion ist. Die 1Zr/1Al Schichten wurden mit der verschiedenen Periodendicken von 20 nm bis 55 nm untersucht. Die Reaktionsgeschwindigkeit und Reaktionstemperatur änderten sich im Bereich 0.23-1.22 m/s und 1581-1707 °C. Hier wurde auch die Oxidationsreaktion während der fortschreitenden Reaktion aufgezeigt. Zum ersten Mal wurden ternäre Multilagenschichten von Ti, Si und Al-Reaktanten für verschiedene Schichtenanordnung (Si/Ti/Al/Si und Ti/Si/Ti/nAl, n = 1-3) abgeschieden. Hier, Reaktionseigenschaften hängten von Schichtenanordnung und Al-Molverhältnissen ab. Für den Ti/Si/Ti/Al Schicht konnte eine maximale Reaktionspropagation von (9.2±2) m/s und eine Reaktionstemperatur von (1807±30) °C bestimmt werden. Danach wurden die vorgenannten ternären Folien erstmals in einem reaktiven Fügeprozess eingesetzt. Für die Herstellung großflächiger freistehenden RMS, würde der Einfluss der Substratwerkstoffe in Hinblick auf der Ablöseverhalten nach der Beschichtung untersucht. Die Verwendung des Kupfersubstrats zeigt eine einfache und schnelle Weise, freistehende Folie zu produzieren. Diese Methode ermöglicht die Produktion von freistehenden 1Zr/1Al und 1Ti/1Si/1Ti/Al Folien mit der großen Fläche von 11 cm × 2 cm × 45 [my]m und 8 cm × 4 cm × 52 [my]m. Außerdem zeigt diese Arbeit einen verbesserten Herstellungsprozess mit der Skalierbarkeit und homogenen Mikrostrukturen von Multilagenschichten. Die Untersuchungen in dieser Arbeit zeigen, dass die Zusammensetzung und Morphologie die Reaktionseigenschaften unmittelbar beeinflussen und bieten potenzielle Möglichkeiten als eine kontrollierbare Wärmequelle auf der Basis Ti/Al-, Zr/Al- und Ti/Si/Al RMS zur Verfügung stellen. Andererseits schließt die Reaktion die Effekte der Oxidation und instationären Reaktionspropagation ein, die dabei hilfreich wären, die Reaktionskinetik zu verstehen. Die Ergebnisse in dieser Arbeit können als ein Beitrag zu einem Modell um ideale RMS in Bezug auf Reaktionseigenschaften zu entwickeln.
  • Zugangsstatus: Freier Zugang