• Medientyp: E-Book
  • Titel: Finding Needles in Haystacks : Artificial Intelligence and Recombinant Growth
  • Beteiligte: Agrawal, Ajay [Verfasser:in]; Oettl, Alex [Sonstige Person, Familie und Körperschaft]; McHale, John [Sonstige Person, Familie und Körperschaft]
  • Körperschaft: National Bureau of Economic Research
  • Erschienen: Cambridge, Mass: National Bureau of Economic Research, April 2018
  • Erschienen in: NBER working paper series ; no. w24541
  • Umfang: 1 Online-Ressource
  • Sprache: Englisch
  • DOI: 10.3386/w24541
  • Identifikator:
  • Reproduktionsnotiz: Hardcopy version available to institutional subscribers
  • Entstehung:
  • Anmerkungen: Mode of access: World Wide Web
    System requirements: Adobe [Acrobat] Reader required for PDF files
  • Beschreibung: Innovation is often predicated on discovering useful new combinations of existing knowledge in highly complex knowledge spaces. These needle-in-a-haystack type problems are pervasive in fields like genomics, drug discovery, materials science, and particle physics. We develop a combinatorial-based knowledge production function and embed it in the classic Jones growth model (1995) to explore how breakthroughs in artificial intelligence (AI) that dramatically improve prediction accuracy about which combinations have the highest potential could enhance discovery rates and consequently economic growth. This production function is a generalization (and reinterpretation) of the Romer/Jones knowledge production function. Separate parameters control the extent of individual-researcher knowledge access, the effects of fishing out/complexity, and the ease of forming research teams
  • Zugangsstatus: Freier Zugang