• Medientyp: E-Book
  • Titel: Analysis in Banach Spaces : Volume I: Martingales and Littlewood-Paley Theory
  • Beteiligte: Hytönen, Tuomas [Verfasser:in]; Neerven, Jan van [Sonstige Person, Familie und Körperschaft]; Veraar, Mark [Sonstige Person, Familie und Körperschaft]; Weis, Lutz [Sonstige Person, Familie und Körperschaft]
  • Erschienen: [Cham]: Springer, 2016
  • Erschienen in: Ergebnisse der Mathematik und ihrer Grenzgebiete ; F3,63
    Bücher
  • Umfang: Online-Ressource (XVII, 614 p. 3 illus, online resource)
  • Sprache: Englisch
  • DOI: 10.1007/978-3-319-48520-1
  • ISBN: 9783319485201
  • Identifikator:
  • RVK-Notation: SK 600 : Funktionalanalysis
  • Schlagwörter: Mathematics ; Fourier analysis ; Functional analysis ; Measure theory ; Partial differential equations ; Probabilities
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: 1.Bochner Spaces -- 2.Operators on Bochner Spaces -- 3.Martingales -- 4.UMD spaces -- 5. Hilbert transform and Littlewood-Paley Theory -- 6.Open Problems -- A.Mesaure Theory -- B.Banach Spaces -- C.Interpolation Theory -- D.Schatten classes.

    The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, and culminates in a treatment of the Hilbert transform, Littlewood-Paley theory and the vector-valued Mihlin multiplier theorem. Over the past fifteen years, motivated by regularity problems in evolution equations, there has been tremendous progress in the analysis of Banach space-valued functions and processes. The contents of this extensive and powerful toolbox have been mostly scattered around in research papers and lecture notes. Collecting this diverse body of material into a unified and accessible presentation fills a gap in the existing literature. The principal audience that we have in mind consists of researchers who need and use Analysis in Banach Spaces as a tool for studying problems in partial differential equations, harmonic analysis, and stochastic analysis. Self-contained and offering complete proofs, this work is accessible to graduate students and researchers with a background in functional analysis or related areas.