Sexual selection favours traits that confer a competitive advantage in access to mates and to their gametes. This results in males evolving a wide array of adaptations that may be conflictual with female’s interests and even to collateral negative effects on female’s lifespan or reproductive success. Harmful male adaptations are diverse and can be extreme. For example, males of various species evolved adaptations that incur physical damage to the female during copulation, referred to as traumatic mating. Most of these adaptations provide males with a competitive fertilization advantage due to the injection of sperm or non-sperm compounds through the wound. In the spider taxonomical literature, alterations of external genital structures have been reported in females and may result from male inflicted damage during copulation. Contrarily to other cases of traumatic mating, the transfer of sperm or non-sperm compounds does not seem to be the target of selection for external female genital mutilation (EFGM) to evolve. Therefore, investigating EFGM may provide valuable information to extend our understanding of the evolution of harmful male adaptations. In this thesis, I explore this newly discovered phenomenon and combine empirical and theoretical approaches to investigate the causes and consequences of EFGM evolution from male and female perspectives. My findings suggest that EFGM is a natural phenomenon and is potentially widespread throughout spider taxa. I demonstrate the ...