• Medientyp: E-Book
  • Titel: Causality in econometric modeling : from theory to structural causal modeling
  • Beteiligte: Mouchart, Michel [Verfasser:in]; Orsi, Renzo [Verfasser:in]; Wunsch, Guillaume J. [Verfasser:in]
  • Erschienen: Bologna, Italy: Alma Mater Studiorum - Università di Bologna, Department of Economics, February 18, 2020
  • Erschienen in: Università di Bologna: Quaderni - working paper DSE ; 1143
  • Umfang: 1 Online-Ressource (circa 35 Seiten)
  • Sprache: Englisch
  • DOI: 10.6092/unibo/amsacta/6337
  • Identifikator:
  • Schlagwörter: structural modeling ; exogeneity ; causality ; model-based anddesign-based approaches ; recursive decomposition ; history-friendly simulation ; transfer entropy ; Graue Literatur
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: This paper examines different approaches for assessing causality as typically followed in econometrics and proposes a constructive perspective for improving statistical models elaborated in view of causal analysis. Without attempting to be exhaustive, this paper examines some of these approaches. Traditional structural modeling is first discussed. A distinction is then drawn between model-based and design-based approaches. Some more recent developments are examined next, namely history-friendly simulation and information-theory based approaches. Finally, in a constructive perspective, structural causal modeling (SCM) is presented, based on the concepts of mechanism and sub-mechanisms, and of recursive decomposition of the joint distribution of variables. This modeling strategy endeavors at representing the structure of the underlying data generating process. It operationalizes the concept of causation through the ordering and role-function of the variables in each of the intelligible sub-mechanisms.
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung - Nicht kommerziell (CC BY-NC)